sherzod-hakimov commited on
Commit
54f2589
·
1 Parent(s): 8bf318d

trend plot

Browse files
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🏆
4
  colorFrom: yellow
5
  colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.40.0
8
  app_file: app.py
9
  pinned: false
10
  ---
 
4
  colorFrom: yellow
5
  colorTo: green
6
  sdk: gradio
7
+ sdk_version: 5.8.0
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py CHANGED
@@ -8,15 +8,14 @@ from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CLEMSCORE_TEXT, MU
8
  from src.leaderboard_utils import query_search, get_github_data
9
  from src.plot_utils import split_models, plotly_plot, get_plot_df, update_open_models, update_closed_models
10
  from src.plot_utils import reset_show_all, reset_show_names, reset_show_legend, reset_mobile_view
11
- from src.version_utils import get_versions_data
 
12
 
13
  """
14
  CONSTANTS
15
  """
16
  # For restarting the gradio application every 24 Hrs
17
  TIME = 43200 # in seconds # Reload will not work locally - requires HFToken # The app launches locally as expected - only without the reload utility
18
- # For Leaderboard table
19
- dataframe_height = 800 # Height of the table in pixels # Set on average considering all possible devices
20
 
21
 
22
  """
@@ -33,29 +32,29 @@ def restart_space():
33
  GITHUB UTILS
34
  """
35
  github_data = get_github_data()
36
- text_leaderboard = github_data["text"][0] # Get the text-only leaderboard for its available latest version
37
- multimodal_leaderboard = github_data["multimodal"][0] # Get multimodal leaderboard for its available latest version.
38
 
39
  # Show only First 4 columns for the leaderboards
 
40
  text_leaderboard = text_leaderboard.iloc[:, :4]
41
- print(f"Showing the following columns for the latest leaderboard: {text_leaderboard.columns}")
42
  multimodal_leaderboard = multimodal_leaderboard.iloc[:, :4]
43
- print(f"Showing the following columns for the multimodal leaderboard: {multimodal_leaderboard.columns}")
44
 
45
 
46
  """
47
  VERSIONS UTILS
48
  """
49
- versions_data = get_versions_data()
50
- latest_version = versions_data['latest'] # Always show latest version in text-only benchmark
51
- last_updated_date = versions_data['date']
52
- version_names = list(versions_data.keys())
53
- version_names = [v for v in version_names if v.startswith("v")] # Remove "latest" and "date" keys
54
 
55
  global version_df
56
- version_df = versions_data[latest_version]
57
  def select_version_df(name):
58
- return versions_data[name]
 
 
59
 
60
  """
61
  MAIN APPLICATION
@@ -82,13 +81,12 @@ with hf_app:
82
  value=text_leaderboard,
83
  elem_id="text-leaderboard-table",
84
  interactive=False,
85
- visible=True,
86
- height=dataframe_height
87
  )
88
 
89
  # Show information about the clemscore and last updated date below the table
90
  gr.HTML(CLEMSCORE_TEXT)
91
- gr.HTML(f"Last updated - {github_data['date']}")
92
 
93
  # Add a dummy leaderboard to handle search queries in leaderboard_table
94
  # This will show a temporary leaderboard based on the searched value
@@ -122,13 +120,12 @@ with hf_app:
122
  value=multimodal_leaderboard,
123
  elem_id="mm-leaderboard-table",
124
  interactive=False,
125
- visible=True,
126
- height=dataframe_height
127
  )
128
 
129
  # Show information about the clemscore and last updated date below the table
130
  gr.HTML(CLEMSCORE_TEXT)
131
- gr.HTML(f"Last updated - {github_data['mm_date']}")
132
 
133
  # Add a dummy leaderboard to handle search queries in leaderboard_table
134
  # This will show a temporary leaderboard based on the searched value
@@ -150,7 +147,7 @@ with hf_app:
150
  """
151
  ####################### THIRD TAB - PLOTS - %PLAYED V/S QUALITY SCORE #######################
152
  """
153
- with gr.TabItem("📈 Plots", elem_id="plots", id=2):
154
  """
155
  DropDown Select for Text/Multimodal Leaderboard
156
  """
@@ -304,7 +301,7 @@ with hf_app:
304
  queue=True
305
  )
306
 
307
- ## Implement Feature - Reset Plot when Leaderboard selection changes
308
  leaderboard_selection.change(
309
  reset_show_all,
310
  outputs=[show_all],
@@ -342,9 +339,52 @@ with hf_app:
342
  )
343
 
344
  """
345
- ####################### FOURTH TAB - VERSIONS AND DETAILS #######################
346
  """
347
- with gr.TabItem("🔄 Versions and Details", elem_id="versions-details-tab", id=3):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348
  with gr.Row():
349
  version_select = gr.Dropdown(
350
  version_names, label="Select Version 🕹️", value=latest_version
@@ -360,8 +400,7 @@ with hf_app:
360
  value=version_df,
361
  elem_id="version-leaderboard-table",
362
  interactive=False,
363
- visible=True,
364
- height=dataframe_height
365
  )
366
 
367
  dummy_prev_table = gr.Dataframe(
 
8
  from src.leaderboard_utils import query_search, get_github_data
9
  from src.plot_utils import split_models, plotly_plot, get_plot_df, update_open_models, update_closed_models
10
  from src.plot_utils import reset_show_all, reset_show_names, reset_show_legend, reset_mobile_view
11
+ from src.version_utils import get_version_data
12
+ from src.trend_utils import get_final_trend_plot
13
 
14
  """
15
  CONSTANTS
16
  """
17
  # For restarting the gradio application every 24 Hrs
18
  TIME = 43200 # in seconds # Reload will not work locally - requires HFToken # The app launches locally as expected - only without the reload utility
 
 
19
 
20
 
21
  """
 
32
  GITHUB UTILS
33
  """
34
  github_data = get_github_data()
35
+ text_leaderboard = github_data["text"]["dataframes"][0] # Get the latest version of text-only leaderboard
36
+ multimodal_leaderboard = github_data["multimodal"]["dataframes"][0] # Get the latest version of multimodal leaderboard
37
 
38
  # Show only First 4 columns for the leaderboards
39
+ # Should be Model Name, Clemscore, %Played, and Quality Score
40
  text_leaderboard = text_leaderboard.iloc[:, :4]
 
41
  multimodal_leaderboard = multimodal_leaderboard.iloc[:, :4]
 
42
 
43
 
44
  """
45
  VERSIONS UTILS
46
  """
47
+ versions_data = get_version_data()
48
+ latest_version = versions_data['versions'][0]['name']
49
+ last_updated_date = versions_data['versions'][0]['last_updated'][0]
50
+ version_names = [v['name'] for v in versions_data['versions']]
 
51
 
52
  global version_df
53
+ version_df = versions_data['dataframes'][0]
54
  def select_version_df(name):
55
+ for i, v in enumerate(versions_data['versions']):
56
+ if v['name'] == name:
57
+ return versions_data['dataframes'][i]
58
 
59
  """
60
  MAIN APPLICATION
 
81
  value=text_leaderboard,
82
  elem_id="text-leaderboard-table",
83
  interactive=False,
84
+ visible=True
 
85
  )
86
 
87
  # Show information about the clemscore and last updated date below the table
88
  gr.HTML(CLEMSCORE_TEXT)
89
+ gr.HTML(f"Last updated - {github_data['text']['version_data'][0]['last_updated'][0]}")
90
 
91
  # Add a dummy leaderboard to handle search queries in leaderboard_table
92
  # This will show a temporary leaderboard based on the searched value
 
120
  value=multimodal_leaderboard,
121
  elem_id="mm-leaderboard-table",
122
  interactive=False,
123
+ visible=True
 
124
  )
125
 
126
  # Show information about the clemscore and last updated date below the table
127
  gr.HTML(CLEMSCORE_TEXT)
128
+ gr.HTML(f"Last updated - {github_data['multimodal']['version_data'][0]['last_updated'][0]}")
129
 
130
  # Add a dummy leaderboard to handle search queries in leaderboard_table
131
  # This will show a temporary leaderboard based on the searched value
 
147
  """
148
  ####################### THIRD TAB - PLOTS - %PLAYED V/S QUALITY SCORE #######################
149
  """
150
+ with gr.TabItem("📊 Plots", elem_id="plots", id=2):
151
  """
152
  DropDown Select for Text/Multimodal Leaderboard
153
  """
 
301
  queue=True
302
  )
303
 
304
+ ## Reset Plot when Leaderboard selection changes
305
  leaderboard_selection.change(
306
  reset_show_all,
307
  outputs=[show_all],
 
339
  )
340
 
341
  """
342
+ ####################### FOURTH TAB - TRENDS #######################
343
  """
344
+ with gr.TabItem("📈Trends", elem_id="trends-tab", id=3):
345
+ with gr.Row():
346
+ mkd_text = gr.Markdown("### Commercial v/s Open-Weight models - clemscore over time. The size of the circles represents the scaled value of the parameters of the models. Larger circles indicate higher parameter values.")
347
+
348
+ with gr.Row():
349
+ with gr.Column(scale=3):
350
+ trend_select = gr.Dropdown(
351
+ choices=["Text", "Multimodal"],
352
+ value=None,
353
+ label="Select Benchmark 🔍",
354
+ elem_id="value-select-7",
355
+ interactive=True,
356
+ )
357
+ with gr.Column(scale=1):
358
+ mobile_view = gr.CheckboxGroup(
359
+ choices=["Mobile View"],
360
+ value=[],
361
+ label="View plot on smaller screens 📱",
362
+ elem_id="value-select-8",
363
+ interactive=True,
364
+ )
365
+
366
+ with gr.Row():
367
+ trend_plot = gr.Plot(show_label=False)
368
+
369
+ trend_select.change(
370
+ get_final_trend_plot,
371
+ [trend_select, mobile_view],
372
+ [trend_plot],
373
+ queue=True
374
+ )
375
+
376
+ mobile_view.change(
377
+ get_final_trend_plot,
378
+ [trend_select, mobile_view],
379
+ [trend_plot],
380
+ queue=True
381
+ )
382
+
383
+
384
+ """
385
+ ####################### FIFTH TAB - VERSIONS AND DETAILS #######################
386
+ """
387
+ with gr.TabItem("🔄 Versions and Details", elem_id="versions-details-tab", id=4):
388
  with gr.Row():
389
  version_select = gr.Dropdown(
390
  version_names, label="Select Version 🕹️", value=latest_version
 
400
  value=version_df,
401
  elem_id="version-leaderboard-table",
402
  interactive=False,
403
+ visible=True
 
404
  )
405
 
406
  dummy_prev_table = gr.Dataframe(
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- gradio==4.40.0
2
  pandas==2.2.2
3
  plotly==5.18.0
4
  apscheduler==3.10.4
 
1
+ gradio==5.8.0
2
  pandas==2.2.2
3
  plotly==5.18.0
4
  apscheduler==3.10.4
src/assets/text_content.py CHANGED
@@ -1,6 +1,9 @@
1
  TITLE = """<h1 align="center" id="space-title"> 🏆 CLEM Leaderboard</h1>"""
2
 
3
  REPO = "https://raw.githubusercontent.com/clembench/clembench-runs/main/"
 
 
 
4
  HF_REPO = "colab-potsdam/clem-leaderboard"
5
 
6
  TEXT_NAME = "🥇 CLEM Leaderboard"
 
1
  TITLE = """<h1 align="center" id="space-title"> 🏆 CLEM Leaderboard</h1>"""
2
 
3
  REPO = "https://raw.githubusercontent.com/clembench/clembench-runs/main/"
4
+ REGISTRY_URL = "https://raw.githubusercontent.com/clp-research/clembench/refs/heads/main/backends/model_registry.json"
5
+ BENCHMARK_FILE = "benchmark_runs.json"
6
+
7
  HF_REPO = "colab-potsdam/clem-leaderboard"
8
 
9
  TEXT_NAME = "🥇 CLEM Leaderboard"
src/leaderboard_utils.py CHANGED
@@ -5,11 +5,12 @@ import json
5
  from io import StringIO
6
  from datetime import datetime
7
 
8
- from src.assets.text_content import REPO
9
 
10
  def get_github_data():
11
  """
12
- Read and process data from CSV files hosted on GitHub. - https://github.com/clembench/clembench-runs
 
13
 
14
  Returns:
15
  github_data (dict): Dictionary containing:
@@ -17,74 +18,60 @@ def get_github_data():
17
  - "multimodal": List of DataFrames for each version's multimodal leaderboard data.
18
  - "date": Formatted date of the latest version in "DD Month YYYY" format.
19
  """
20
- base_repo = REPO
21
- json_url = base_repo + "benchmark_runs.json"
22
  response = requests.get(json_url)
23
 
24
  # Check if the JSON file request was successful
25
  if response.status_code != 200:
26
- print(f"Failed to read JSON file: Status Code: {response.status_code}")
27
  return None, None, None, None
28
 
29
  json_data = response.json()
30
  versions = json_data['versions']
31
 
 
32
  version_names = sorted(
33
  [ver['version'] for ver in versions],
34
  key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))),
35
  reverse=True
36
  )
37
 
38
- # Get Leaderboard data - for text-only + multimodal
39
- github_data = {}
40
-
41
- # Collect Dataframes
42
- text_dfs = []
43
- mm_dfs = []
44
-
45
- text_flag = True
46
- text_date = ""
47
- mm_flag = True
48
- mm_date = ""
49
 
50
  for version in version_names:
51
- # Collect CSV data in descending order of clembench-runs versions
52
- # Collect Text-only data
53
- if len(version.split('_')) == 1:
54
- text_url = f"{base_repo}{version}/results.csv"
55
- csv_response = requests.get(text_url)
56
- if csv_response.status_code == 200:
57
- df = pd.read_csv(StringIO(csv_response.text))
58
- df = process_df(df)
59
- df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
60
- text_dfs.append(df)
61
- if text_flag:
62
- text_flag = False
63
- text_date = next(ver['date'] for ver in versions if ver['version'] == version)
64
- text_date = datetime.strptime(text_date, "%Y-%m-%d").strftime("%d %b %Y")
65
 
 
 
 
 
 
 
 
 
 
66
  else:
67
- print(f"Failed to read Text-only leaderboard CSV file for version: {version}. Status Code: {csv_response.status_code}")
68
-
69
- # Check if version ends with 'multimodal' before constructing the URL
70
- mm_suffix = "_multimodal" if not version.endswith('multimodal') else ""
71
- mm_url = f"{base_repo}{version}{mm_suffix}/results.csv"
72
- mm_response = requests.get(mm_url)
73
- if mm_response.status_code == 200:
74
- df = pd.read_csv(StringIO(mm_response.text))
75
- df = process_df(df)
76
- df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
77
- mm_dfs.append(df)
78
- if mm_flag:
79
- mm_flag = False
80
- mm_date = next(ver['date'] for ver in versions if ver['version'] == version)
81
- mm_date = datetime.strptime(mm_date, "%Y-%m-%d").strftime("%d %b %Y")
82
 
83
 
84
- github_data["text"] = text_dfs
85
- github_data["multimodal"] = mm_dfs
86
- github_data["date"] = text_date
87
- github_data["mm_date"] = mm_date
88
 
89
  return github_data
90
 
@@ -144,3 +131,7 @@ def query_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
144
 
145
  return filtered_df
146
 
 
 
 
 
 
5
  from io import StringIO
6
  from datetime import datetime
7
 
8
+ from src.assets.text_content import REPO, BENCHMARK_FILE
9
 
10
  def get_github_data():
11
  """
12
+ Read and process data from CSV files hosted on GitHub. - https://github.com/clembench/clembench-runs (REPO)
13
+ Set the path in src/assets/text_content/REPO
14
 
15
  Returns:
16
  github_data (dict): Dictionary containing:
 
18
  - "multimodal": List of DataFrames for each version's multimodal leaderboard data.
19
  - "date": Formatted date of the latest version in "DD Month YYYY" format.
20
  """
21
+ json_url = REPO + BENCHMARK_FILE
 
22
  response = requests.get(json_url)
23
 
24
  # Check if the JSON file request was successful
25
  if response.status_code != 200:
26
+ print(f"Failed to read JSON file - {BENCHMARK_FILE} in repo {REPO}: Status Code: {response.status_code}")
27
  return None, None, None, None
28
 
29
  json_data = response.json()
30
  versions = json_data['versions']
31
 
32
+ # Sort the versions in benchmark by latest first
33
  version_names = sorted(
34
  [ver['version'] for ver in versions],
35
  key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))),
36
  reverse=True
37
  )
38
 
39
+ # Collect Dataframes - Text and Multimodal Only - Ignoring _quantized, _backends, _ascii
40
+ text_data = {
41
+ 'version_data': [],
42
+ 'dataframes': []
43
+ }
44
+ multimodal_data = {
45
+ 'version_data': [],
46
+ 'dataframes': []
47
+ }
 
 
48
 
49
  for version in version_names:
50
+ results_url = f"{REPO}{version}/results.csv"
51
+ csv_response = requests.get(results_url)
52
+ if csv_response.status_code == 200:
53
+ df = pd.read_csv(StringIO(csv_response.text))
54
+ df = process_df(df)
55
+ df = df.sort_values(by=df.columns[1], ascending=False) # Sort by Clemscore
 
 
 
 
 
 
 
 
56
 
57
+ version_data = {
58
+ 'name': version,
59
+ 'last_updated': [datetime.strptime(v['last_updated'], '%Y-%m-%d').strftime("%d %b %Y") for v in versions if v['version'] == version],
60
+ 'release_date': [datetime.strptime(v['release_date'], '%Y-%m-%d').strftime("%d %b %Y") for v in versions if v['version'] == version]
61
+ }
62
+
63
+ if 'multimodal' in version:
64
+ multimodal_data['dataframes'].append(df)
65
+ multimodal_data['version_data'].append(version_data)
66
  else:
67
+ text_data['dataframes'].append(df)
68
+ text_data['version_data'].append(version_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
 
71
+ github_data = {
72
+ 'text': text_data,
73
+ 'multimodal': multimodal_data
74
+ }
75
 
76
  return github_data
77
 
 
131
 
132
  return filtered_df
133
 
134
+ if __name__=='__main__':
135
+ data = get_github_data()
136
+ print(data['text']['version_data'])
137
+ print(data['multimodal']['version_data'])
src/plot_utils.py CHANGED
@@ -173,7 +173,7 @@ def update_open_models(leaderboard: str = TEXT_NAME):
173
  Updated checkbox group for Open Models, based on the leaderboard selected
174
  """
175
  github_data = get_github_data()
176
- leaderboard_data = github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]
177
  models = leaderboard_data.iloc[:, 0].unique().tolist()
178
  open_models, commercial_models = split_models(models)
179
  return gr.CheckboxGroup(
@@ -193,7 +193,7 @@ def update_closed_models(leaderboard: str = TEXT_NAME):
193
  Updated checkbox group for Closed Models, based on the leaderboard selected
194
  """
195
  github_data = get_github_data()
196
- leaderboard_data = github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]
197
  models = leaderboard_data.iloc[:, 0].unique().tolist()
198
  open_models, commercial_models = split_models(models)
199
  return gr.CheckboxGroup(
@@ -212,7 +212,7 @@ def get_plot_df(leaderboard: str = TEXT_NAME) -> pd.DataFrame:
212
  DataFrame with model data.
213
  """
214
  github_data = get_github_data()
215
- return github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]
216
 
217
 
218
  """
 
173
  Updated checkbox group for Open Models, based on the leaderboard selected
174
  """
175
  github_data = get_github_data()
176
+ leaderboard_data = github_data["text" if leaderboard == TEXT_NAME else "multimodal"]['dataframes'][0]
177
  models = leaderboard_data.iloc[:, 0].unique().tolist()
178
  open_models, commercial_models = split_models(models)
179
  return gr.CheckboxGroup(
 
193
  Updated checkbox group for Closed Models, based on the leaderboard selected
194
  """
195
  github_data = get_github_data()
196
+ leaderboard_data = github_data["text" if leaderboard == TEXT_NAME else "multimodal"]['dataframes'][0]
197
  models = leaderboard_data.iloc[:, 0].unique().tolist()
198
  open_models, commercial_models = split_models(models)
199
  return gr.CheckboxGroup(
 
212
  DataFrame with model data.
213
  """
214
  github_data = get_github_data()
215
+ return github_data["text" if leaderboard == TEXT_NAME else "multimodal"]['dataframes'][0]
216
 
217
 
218
  """
src/trend_utils.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Fetch Model Registry and clemscores
2
+ import requests
3
+ import pandas as pd
4
+ from datetime import datetime
5
+ import pandas as pd
6
+ import plotly.express as px
7
+ import plotly.graph_objects as go
8
+ import numpy as np
9
+
10
+ from src.assets.text_content import REGISTRY_URL, REPO, BENCHMARK_FILE
11
+ from src.leaderboard_utils import get_github_data
12
+
13
+ # Cut-off date from where to start the trendgraph
14
+ START_DATE = '2023-06-01'
15
+
16
+ def get_param_size(params: str) -> float:
17
+ """Convert parameter size from string to float.
18
+
19
+ Args:
20
+ params (str): The parameter size as a string (e.g., '1000B', '1T').
21
+
22
+ Returns:
23
+ float: The size of parameters in float.
24
+ """
25
+ if not params:
26
+ param_size = 0
27
+ else:
28
+ if params[-1] == "B":
29
+ param_size = params[:-1]
30
+ param_size = float(param_size)
31
+ elif params[-1] == "T":
32
+ param_size = params[:-1]
33
+ param_size = float(param_size)
34
+ param_size *= 1000
35
+ else:
36
+ print("Not a valid parameter size")
37
+
38
+ return param_size
39
+
40
+ def date_difference(date_str1: str, date_str2: str) -> int:
41
+ """Calculate the difference in days between two dates.
42
+
43
+ Args:
44
+ date_str1 (str): The first date as a string in 'YYYY-MM-DD' format.
45
+ date_str2 (str): The second date as a string in 'YYYY-MM-DD' format.
46
+
47
+ Returns:
48
+ int: The difference in days between the two dates.
49
+ """
50
+ date_format = "%Y-%m-%d"
51
+ date1 = datetime.strptime(date_str1, date_format)
52
+ date2 = datetime.strptime(date_str2, date_format)
53
+ return (date1 - date2).days
54
+
55
+
56
+ def populate_list(df: pd.DataFrame, abs_diff: float) -> list:
57
+ """Create a list of models based on clemscore differences.
58
+
59
+ Args:
60
+ df (pd.DataFrame): DataFrame containing model data.
61
+ abs_diff (float): The absolute difference threshold for clemscore.
62
+
63
+ Returns:
64
+ list: A list of model names that meet the criteria.
65
+ """
66
+ l = [df.iloc[0]['model']]
67
+ prev_clemscore = df.iloc[0]['clemscore']
68
+ prev_date = df.iloc[0]['release_date']
69
+
70
+ for i in range(1, len(df)):
71
+ curr_clemscore = df.iloc[i]['clemscore']
72
+ curr_date = df.iloc[i]['release_date']
73
+ date_diff = date_difference(curr_date, prev_date)
74
+
75
+ if curr_clemscore - prev_clemscore >= abs_diff:
76
+ if date_diff == 0:
77
+ l[-1] = df.iloc[i]['model']
78
+ else:
79
+ l.append(df.iloc[i]['model'])
80
+
81
+ prev_clemscore = curr_clemscore
82
+ prev_date = curr_date
83
+
84
+ # # Add the last model if the difference between the last and previous date is greater than 15 days
85
+ # last_date = df.iloc[-1]['release_date']
86
+ # if date_difference(last_date, prev_date) > 15:
87
+ # l.append(df.iloc[-1]['model'])
88
+
89
+ return l
90
+
91
+
92
+ def get_models_to_display(result_df: pd.DataFrame, open_dip: float = 0, comm_dip: float = 0) -> tuple:
93
+ """Retrieve models to display based on clemscore differences.
94
+
95
+ Args:
96
+ result_df (pd.DataFrame): DataFrame containing model data.
97
+ open_dip (float, optional): Threshold for open models. Defaults to 0.
98
+ comm_dip (float, optional): Threshold for commercial models. Defaults to 0.
99
+
100
+ Returns:
101
+ tuple: Two lists of model names (open and commercial).
102
+ """
103
+ open_model_df = result_df[result_df['open_weight']==True]
104
+ comm_model_df = result_df[result_df['open_weight']==False]
105
+
106
+ open_model_df = open_model_df.sort_values(by='release_date', ascending=True)
107
+ comm_model_df = comm_model_df.sort_values(by='release_date', ascending=True)
108
+ open_models = populate_list(open_model_df, open_dip)
109
+ comm_models = populate_list(comm_model_df, comm_dip)
110
+ return open_models, comm_models
111
+
112
+
113
+ def get_trend_data(text_dfs: list, model_registry_data: list) -> pd.DataFrame:
114
+ """Process text data frames to extract model information.
115
+
116
+ Args:
117
+ text_dfs (list): List of DataFrames containing model information.
118
+ model_registry_data (list): List of dictionaries containing model registry data.
119
+
120
+ Returns:
121
+ pd.DataFrame: DataFrame containing processed model data.
122
+ """
123
+ visited = set() # Track models that have been processed
124
+ result_df = pd.DataFrame(columns=['model', 'clemscore', 'open_weight', 'release_date', 'parameters', 'est_flag'])
125
+
126
+ for df in text_dfs:
127
+ for i in range(len(df)):
128
+ model_name = df['Model'].iloc[i]
129
+ if model_name not in visited:
130
+ visited.add(model_name)
131
+ for dict_obj in model_registry_data:
132
+ if dict_obj["model_name"] == model_name:
133
+ if dict_obj["parameters"] == "" :
134
+ params = "1000B"
135
+ est_flag = True
136
+ else:
137
+ params = dict_obj['parameters']
138
+ est_flag = False
139
+
140
+ param_size = get_param_size(params)
141
+ new_data = {'model': model_name, 'clemscore': df['Clemscore'].iloc[i], 'open_weight':dict_obj['open_weight'],
142
+ 'release_date': dict_obj['release_date'], 'parameters': param_size, 'est_flag': est_flag}
143
+ result_df.loc[len(result_df)] = new_data
144
+ break
145
+ return result_df # Return the compiled DataFrame
146
+
147
+
148
+ def get_plot(df: pd.DataFrame, start_date: str = '2023-06-01', end_date: str = '2024-12-30',
149
+ benchmark_ticks: dict = {}, benchmark_update = {}, **plot_kwargs) -> go.Figure:
150
+ """Generate a scatter plot for the given DataFrame.
151
+
152
+ Args:
153
+ df (pd.DataFrame): DataFrame containing model data.
154
+ start_date (str, optional): Start date for filtering. Defaults to '2023-06-01'.
155
+ end_date (str, optional): End date for filtering. Defaults to '2024-12-30'.
156
+ benchmark_ticks (dict, optional): Custom benchmark ticks for the version dates. Defaults to {}.
157
+ benchmark_update (dict, optional): Custom benchmark metadata containing last_updated date for the versions. Defaults to {}.
158
+
159
+ Keyword Args:
160
+ open_dip (float, optional): Threshold for open models' clemscore differences. Max dip in clemscore allowed to be considered in trend.
161
+ comm_dip (float, optional): Threshold for commercial models' clemscore differences. Max dip in clemscore allowed to be considered in trend.
162
+ height (int, optional): Height of the plot in pixels. Adjusted for mobile or desktop views.
163
+ mobile_view (bool, optional): Flag to indicate if the plot should be optimized for mobile display. Defaults to False.
164
+
165
+ Returns:
166
+ go.Figure: The generated plot.
167
+ """
168
+
169
+ open_dip = plot_kwargs['open_dip']
170
+ comm_dip = plot_kwargs['comm_dip']
171
+ height = plot_kwargs['height']
172
+ width = plot_kwargs['width']
173
+
174
+ mobile_view = True if plot_kwargs['mobile_view'] else False
175
+
176
+ max_clemscore = df['clemscore'].max()
177
+ # Convert 'release_date' to datetime
178
+ df['Release date'] = pd.to_datetime(df['release_date'], format='ISO8601')
179
+ # Filter out data before April 2023/START_DATE
180
+ df = df[df['Release date'] >= pd.to_datetime(start_date)]
181
+ open_model_list, comm_model_list = get_models_to_display(df, open_dip, comm_dip)
182
+ models_to_display = open_model_list + comm_model_list
183
+ print(f"open_model_list: {open_model_list}, comm_model_list: {comm_model_list}")
184
+
185
+ # Create a column to indicate if the model should be labeled
186
+ df['label_model'] = df['model'].apply(lambda x: x if x in models_to_display else "")
187
+
188
+ # If mobile_view, then show only the models in models_to_display i.e. on the trend line #minimalistic
189
+ if mobile_view:
190
+ df = df[df['model'].isin(models_to_display)]
191
+
192
+ # Add an identifier column to each DataFrame
193
+ df['Model Type'] = df['open_weight'].map({True: 'Open-Weight', False: 'Commercial'})
194
+
195
+ marker_size = df['parameters'].apply(lambda x: np.sqrt(x) if x > 0 else np.sqrt(400)).astype(float) # Arbitrary sqrt value to scale marker size based on parameter size
196
+
197
+ open_color = 'red'
198
+ comm_color = 'blue'
199
+
200
+ # Create the scatter plot
201
+ fig = px.scatter(df,
202
+ x="Release date",
203
+ y="clemscore",
204
+ color="Model Type", # Differentiates the datasets by color
205
+ hover_name="model",
206
+ size=marker_size,
207
+ size_max=40, # Max size of the circles
208
+ template="plotly_white",
209
+ hover_data={ # Customize hover information
210
+ "Release date": True, # Show the release date
211
+ "clemscore": True, # Show the clemscore
212
+ "Model Type": True # Show the model type
213
+ },
214
+ custom_data=["model", "Release date", "clemscore"] # Specify custom data columns for hover
215
+ )
216
+
217
+ fig.update_traces(
218
+ hovertemplate='Model Name: %{customdata[0]}<br>Release date: %{customdata[1]}<br>Clemscore: %{customdata[2]}<br>'
219
+ )
220
+
221
+ # Sort dataframes for line plotting
222
+ df_open = df[df['model'].isin(open_model_list)].sort_values(by='Release date')
223
+ df_commercial = df[df['model'].isin(comm_model_list)].sort_values(by='Release date')
224
+
225
+ ## Custom tics for x axis
226
+ # Define the start and end dates
227
+ start_date = pd.to_datetime(start_date)
228
+ end_date = pd.to_datetime(end_date)
229
+ # Generate ticks every two months
230
+ date_range = pd.date_range(start=start_date, end=end_date, freq='2MS') # '2MS' stands for 2 Months Start frequency
231
+ # Create labels for these ticks
232
+ custom_ticks = {date: date.strftime('%b %Y') for date in date_range}
233
+
234
+ ## Benchmark Version ticks
235
+ benchmark_tickvals = list(pd.to_datetime(list(benchmark_ticks.keys())))
236
+ custom_ticks = {k:v for k,v in custom_ticks.items() if k not in benchmark_tickvals}
237
+ custom_tickvals = list(custom_ticks.keys())
238
+
239
+
240
+ for date, version in benchmark_ticks.items():
241
+ # Find the corresponding update date from benchmark_update based on the version name
242
+ update_date = next((update_date for update_date, ver in benchmark_update.items() if version in ver), None)
243
+
244
+ if update_date:
245
+ # Add vertical black dotted line for each benchmark_tick date
246
+ fig.add_shape(
247
+ go.layout.Shape(
248
+ type='line',
249
+ x0=date,
250
+ x1=date,
251
+ y0=0,
252
+ y1=1,
253
+ yref='paper',
254
+ line=dict(color='#A9A9A9', dash='dash'), # Black dotted line
255
+ )
256
+ )
257
+
258
+ # Add hover information across the full y-axis range
259
+ fig.add_trace(
260
+ go.Scatter(
261
+ x=[date]*100,
262
+ y=list(range(0,100)), # Covers full y-axis range
263
+ mode='markers',
264
+ line=dict(color='rgba(255,255,255,0)', width=0), # Fully transparent line
265
+ hovertext=[
266
+ f"Version: {version} released on {date.strftime('%d %b %Y')}, last updated on: {update_date.strftime('%d %b %Y')}"
267
+ for _ in range(100)
268
+ ], # Unique hovertext for all points
269
+ hoverinfo="text",
270
+ hoveron='points',
271
+ showlegend=False
272
+ )
273
+ )
274
+
275
+
276
+ if mobile_view:
277
+ # Remove custom_tickvals within -1 month to +1 month of benchmark_tickvals for better visibility
278
+ one_month = pd.DateOffset(months=1)
279
+ filtered_custom_tickvals = [
280
+ date for date in custom_tickvals
281
+ if not any((benchmark_date - one_month <= date <= benchmark_date + one_month) for benchmark_date in benchmark_tickvals)
282
+ ]
283
+ # Alternate <br> for benchmark ticks based on date difference (Eg. v1.6, v1.6.5 too close to each other for MM benchmark)
284
+ benchmark_tick_texts = []
285
+ for i in range(len(benchmark_tickvals)):
286
+ if i == 0:
287
+ benchmark_tick_texts.append(f"<br><br><b>{benchmark_ticks[benchmark_tickvals[i]]}</b>")
288
+ else:
289
+ date_diff = (benchmark_tickvals[i] - benchmark_tickvals[i - 1]).days
290
+ if date_diff <= 75:
291
+ benchmark_tick_texts.append(f"<br><br><br><b>{benchmark_ticks[benchmark_tickvals[i]]}</b>")
292
+ else:
293
+ benchmark_tick_texts.append(f"<br><br><b>{benchmark_ticks[benchmark_tickvals[i]]}</b>")
294
+ fig.update_xaxes(
295
+ tickvals=filtered_custom_tickvals + benchmark_tickvals, # Use filtered_custom_tickvals
296
+ ticktext=[f"{date.strftime('%b')}<br>{date.strftime('%y')}" for date in filtered_custom_tickvals] +
297
+ benchmark_tick_texts, # Use the new benchmark tick texts
298
+ tickangle=0,
299
+ tickfont=dict(size=10)
300
+ )
301
+ fig.update_yaxes(range=[0, 110]) # Set y-axis range to 110 for better visibility of legend and avoiding overlap with interactivity block of plotly on top-right
302
+ display_mode = 'lines+markers'
303
+ else:
304
+ fig.update_xaxes(
305
+ tickvals=custom_tickvals + benchmark_tickvals, # Use filtered_custom_tickvals
306
+ ticktext=[f"{date.strftime('%b')} {date.strftime('%Y')}" for date in custom_tickvals] +
307
+ [f"<br><span style='font-size:12px;'><b>{benchmark_ticks[date]}</b></span>" for date in benchmark_tickvals], # Added <br> for vertical alignment
308
+ tickangle=0,
309
+ tickfont=dict(size=10)
310
+ )
311
+ fig.update_yaxes(range=[0, max_clemscore+10])
312
+ display_mode = 'lines+markers+text'
313
+
314
+
315
+ # Add lines connecting the points for open models
316
+ fig.add_trace(go.Scatter(x=df_open['Release date'], y=df_open['clemscore'],
317
+ mode=display_mode, # Include 'text' in the mode
318
+ name='Open Models Trendline',
319
+ text=df_open['label_model'], # Use label_model for text labels
320
+ textposition='top center', # Position of the text labels
321
+ line=dict(color=open_color), showlegend=False))
322
+
323
+ # Add lines connecting the points for commercial models
324
+ fig.add_trace(go.Scatter(x=df_commercial['Release date'], y=df_commercial['clemscore'],
325
+ mode=display_mode, # Include 'text' in the mode
326
+ name='Commercial Models Trendline',
327
+ text=df_commercial['label_model'], # Use label_model for text labels
328
+ textposition='top center', # Position of the text labels
329
+ line=dict(color=comm_color), showlegend=False))
330
+
331
+
332
+ # Update layout to ensure text labels are visible
333
+ fig.update_traces(textposition='top center')
334
+
335
+ # Update the Legend Position and plot dimensions
336
+ fig.update_layout(height=height,
337
+ legend=dict(
338
+ yanchor="top",
339
+ y=0.99,
340
+ xanchor="left",
341
+ x=0.01
342
+ )
343
+ )
344
+
345
+ if width:
346
+ print("Custom Seting the Width :")
347
+ fig.update_layout(width=width)
348
+
349
+ return fig
350
+
351
+ def get_final_trend_plot(benchmark: str = "Text", mobile_view: bool = False) -> go.Figure:
352
+ """Fetch and generate the final trend plot for all models.
353
+
354
+ Args:
355
+ benchmark (str, optional): The benchmark type to use. Defaults to "Text".
356
+ mobile_view (bool, optional): Flag to indicate mobile view. Defaults to False.
357
+
358
+ Returns:
359
+ go.Figure: The generated trend plot for selected benchmark.
360
+ """
361
+ # Fetch Model Registry
362
+ response = requests.get(REGISTRY_URL)
363
+ model_registry_data = response.json()
364
+ # Custom tick labels
365
+ json_url = REPO + BENCHMARK_FILE
366
+ response = requests.get(json_url)
367
+
368
+ # Check if the JSON file request was successful
369
+ if response.status_code != 200:
370
+ print(f"Failed to read JSON file: Status Code: {response.status_code}")
371
+
372
+ json_data = response.json()
373
+ versions = json_data['versions']
374
+
375
+ if mobile_view:
376
+ height = 450
377
+ width = 375
378
+ else:
379
+ height = 1000
380
+ width = None
381
+
382
+ plot_kwargs = {'height': height, 'width': width, 'open_dip': 0, 'comm_dip': 0,
383
+ 'mobile_view': mobile_view}
384
+
385
+ benchmark_ticks = {}
386
+ benchmark_update = {}
387
+ if benchmark == "Text":
388
+ text_dfs = get_github_data()['text']['dataframes']
389
+ text_result_df = get_trend_data(text_dfs, model_registry_data)
390
+ ## Get benchmark tickvalues as dates for X-axis
391
+ for ver in versions:
392
+ if 'multimodal' not in ver['version']: # Skip MM specific benchmark dates
393
+ benchmark_ticks[pd.to_datetime(ver['release_date'])] = ver['version']
394
+ if pd.to_datetime(ver['last_updated']) not in benchmark_update:
395
+ benchmark_update[pd.to_datetime(ver['last_updated'])] = [ver['version']]
396
+ else:
397
+ benchmark_update[pd.to_datetime(ver['last_updated'])].append(ver['version'])
398
+
399
+ fig = get_plot(text_result_df, start_date=START_DATE, end_date=datetime.now().strftime('%Y-%m-%d'), benchmark_ticks=benchmark_ticks, benchmark_update=benchmark_update, **plot_kwargs)
400
+ else:
401
+ mm_dfs = get_github_data()['multimodal']['dataframes']
402
+ result_df = get_trend_data(mm_dfs, model_registry_data)
403
+ df = result_df
404
+ for ver in versions:
405
+ if 'multimodal' in ver['version']:
406
+ temp_ver = ver['version']
407
+ temp_ver = temp_ver.replace('_multimodal', '')
408
+ benchmark_ticks[pd.to_datetime(ver['release_date'])] = temp_ver ## MM benchmark dates considered after v1.6 (incl.)
409
+ benchmark_update[pd.to_datetime(ver['last_updated'])] = temp_ver
410
+
411
+ fig = get_plot(df, start_date=START_DATE, end_date=datetime.now().strftime('%Y-%m-%d'), benchmark_ticks=benchmark_ticks, benchmark_update=benchmark_update, **plot_kwargs)
412
+
413
+ return fig
src/version_utils.py CHANGED
@@ -9,18 +9,20 @@ import json
9
  from io import StringIO
10
 
11
  from src.leaderboard_utils import process_df
12
- from src.assets.text_content import REPO
13
 
14
- def get_versions_data():
 
 
15
  """
16
  Read and process data from CSV files of all available versions hosted on GitHub. - https://github.com/clembench/clembench-runs
17
 
18
  Returns:
19
- versions_data:
20
  -
21
  """
22
  base_repo = REPO
23
- json_url = base_repo + "benchmark_runs.json"
24
  response = requests.get(json_url)
25
 
26
  # Check if the JSON file request was successful
@@ -37,51 +39,44 @@ def get_versions_data():
37
  reverse=True
38
  )
39
 
40
- # Get Last updated date of the latest version
41
- latest_version = version_names[0]
42
- latest_date = next(
43
- ver['date'] for ver in versions if ver['version'] == latest_version
44
- )
45
- formatted_date = datetime.strptime(latest_date, "%Y-%m-%d").strftime("%d %b %Y")
46
-
47
- # Get Versions data
48
- versions_data = {"latest": latest_version, "date": formatted_date}
49
-
50
- # Collect Dataframes
51
- dfs = []
52
 
53
  for version in version_names:
54
- text_url = f"{base_repo}{version}/results.csv"
55
- mm_url = f"{base_repo}{version}_multimodal/results.csv"
56
- quant_url = f"{base_repo}{version}_quantized/results.csv"
57
-
58
- # Text Data
59
- response = requests.get(text_url)
60
  if response.status_code == 200:
61
  df = pd.read_csv(StringIO(response.text))
62
  df = process_df(df)
63
  df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
64
- versions_data[version] = df
65
-
66
- # Multimodal Data
67
- mm_response = requests.get(mm_url)
68
- if mm_response.status_code == 200:
69
- mm_df = pd.read_csv(StringIO(mm_response.text))
70
- mm_df = process_df(mm_df)
71
- mm_df = mm_df.sort_values(by=mm_df.columns[1], ascending=False) # Sort by clemscore column
72
- versions_data[version+"_multimodal"] = mm_df
73
-
74
- # Multimodal Data
75
- q_response = requests.get(quant_url)
76
- if q_response.status_code == 200:
77
- q_df = pd.read_csv(StringIO(q_response.text))
78
- q_df = process_df(q_df)
79
- q_df = q_df.sort_values(by=q_df.columns[1], ascending=False) # Sort by clemscore column
80
- versions_data[version + "_quantized"] = q_df
81
-
82
- return versions_data
 
 
 
 
 
83
 
84
 
85
  if __name__ == "__main__":
86
- versions_data = get_versions_data()
87
- print(versions_data.keys())
 
9
  from io import StringIO
10
 
11
  from src.leaderboard_utils import process_df
12
+ from src.assets.text_content import REPO, BENCHMARK_FILE
13
 
14
+ VARIANTS = ['ascii', 'backends', 'quantized'] # Include other variants if added in the main clembench-runs repo
15
+
16
+ def get_version_data():
17
  """
18
  Read and process data from CSV files of all available versions hosted on GitHub. - https://github.com/clembench/clembench-runs
19
 
20
  Returns:
21
+ version_data:
22
  -
23
  """
24
  base_repo = REPO
25
+ json_url = base_repo + BENCHMARK_FILE
26
  response = requests.get(json_url)
27
 
28
  # Check if the JSON file request was successful
 
39
  reverse=True
40
  )
41
 
42
+ version_data = {
43
+ 'versions': [],
44
+ 'dataframes': []
45
+ }
 
 
 
 
 
 
 
 
46
 
47
  for version in version_names:
48
+ base_url = f"{base_repo}{version}/results.csv"
49
+ response = requests.get(base_url)
 
 
 
 
50
  if response.status_code == 200:
51
  df = pd.read_csv(StringIO(response.text))
52
  df = process_df(df)
53
  df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
54
+ version_data['dataframes'].append(df)
55
+ metadata = {
56
+ 'name': version,
57
+ 'last_updated': [datetime.strptime(v['last_updated'], '%Y-%m-%d').strftime("%d %b %Y") for v in versions if v['version'] == version],
58
+ 'release_date': [datetime.strptime(v['release_date'], '%Y-%m-%d').strftime("%d %b %Y") for v in versions if v['version'] == version]
59
+ }
60
+ version_data['versions'].append(metadata)
61
+
62
+ # Look for variant results file
63
+ version = version.split('_')[0] # Remove _multimodal suffix, and check for other suffixes
64
+ for suffix in VARIANTS:
65
+ base_url = f"{base_repo}{version}_{suffix}/results.csv"
66
+ response = requests.get(base_url)
67
+ if response.status_code == 200:
68
+ df = pd.read_csv(StringIO(response.text))
69
+ df = process_df(df)
70
+ df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
71
+ version_data['dataframes'].append(df)
72
+ metadata = {
73
+ 'name': version + "_" + suffix # Skip Release date and last updated # Not included in becnhmark_runs.json
74
+ }
75
+ version_data['versions'].append(metadata)
76
+
77
+ return version_data
78
 
79
 
80
  if __name__ == "__main__":
81
+ version_data = get_version_data()
82
+ print(version_data['versions'])