File size: 4,473 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
""" ConvMixer

"""
import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import SelectAdaptivePool2d
from ._registry import register_model, generate_default_cfgs
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq

__all__ = ['ConvMixer']


class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, x):
        return self.fn(x) + x


class ConvMixer(nn.Module):
    def __init__(
            self,
            dim,
            depth,
            kernel_size=9,
            patch_size=7,
            in_chans=3,
            num_classes=1000,
            global_pool='avg',
            drop_rate=0.,
            act_layer=nn.GELU,
            **kwargs,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.num_features = dim
        self.grad_checkpointing = False

        self.stem = nn.Sequential(
            nn.Conv2d(in_chans, dim, kernel_size=patch_size, stride=patch_size),
            act_layer(),
            nn.BatchNorm2d(dim)
        )
        self.blocks = nn.Sequential(
            *[nn.Sequential(
                    Residual(nn.Sequential(
                        nn.Conv2d(dim, dim, kernel_size, groups=dim, padding="same"),
                        act_layer(),
                        nn.BatchNorm2d(dim)
                    )),
                    nn.Conv2d(dim, dim, kernel_size=1),
                    act_layer(),
                    nn.BatchNorm2d(dim)
            ) for i in range(depth)]
        )
        self.pooling = SelectAdaptivePool2d(pool_type=global_pool, flatten=True)
        self.head_drop = nn.Dropout(drop_rate)
        self.head = nn.Linear(dim, num_classes) if num_classes > 0 else nn.Identity()

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(stem=r'^stem', blocks=r'^blocks\.(\d+)')
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            self.pooling = SelectAdaptivePool2d(pool_type=global_pool, flatten=True)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
          
    def forward_features(self, x):
        x = self.stem(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        x = self.pooling(x)
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_convmixer(variant, pretrained=False, **kwargs):
    return build_model_with_cfg(ConvMixer, variant, pretrained, **kwargs)


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .96, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
        'first_conv': 'stem.0',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'convmixer_1536_20.in1k': _cfg(hf_hub_id='timm/'),
    'convmixer_768_32.in1k': _cfg(hf_hub_id='timm/'),
    'convmixer_1024_20_ks9_p14.in1k': _cfg(hf_hub_id='timm/')
})



@register_model
def convmixer_1536_20(pretrained=False, **kwargs) -> ConvMixer:
    model_args = dict(dim=1536, depth=20, kernel_size=9, patch_size=7, **kwargs)
    return _create_convmixer('convmixer_1536_20', pretrained, **model_args)


@register_model
def convmixer_768_32(pretrained=False, **kwargs) -> ConvMixer:
    model_args = dict(dim=768, depth=32, kernel_size=7, patch_size=7, act_layer=nn.ReLU, **kwargs)
    return _create_convmixer('convmixer_768_32', pretrained, **model_args)


@register_model
def convmixer_1024_20_ks9_p14(pretrained=False, **kwargs) -> ConvMixer:
    model_args = dict(dim=1024, depth=20, kernel_size=9, patch_size=14, **kwargs)
    return _create_convmixer('convmixer_1024_20_ks9_p14', pretrained, **model_args)