File size: 13,248 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# ------------------------------------------
# CSWin Transformer
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# written By Xiaoyi Dong
# ------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from einops.layers.torch import Rearrange
import torch.utils.checkpoint as checkpoint
import numpy as np
from einops import rearrange, einsum
from einops._torch_specific import allow_ops_in_compiled_graph # requires einops>=0.6.1
allow_ops_in_compiled_graph()
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'cswinmlp_224': _cfg(),
'cswinmlp_384': _cfg(
crop_pct=1.0
),
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class MixingAttention(nn.Module):
def __init__(self, dim, resolution, idx, num_heads=8, split_size=7, dim_out=None, d=2, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.dim_out = dim_out or dim
self.num_heads = num_heads
self.resolution = resolution
self.split_size = split_size
assert self.resolution % self.split_size == 0
self.d = d
if idx == -1:
H_sp, W_sp = self.resolution, self.resolution
elif idx == 0:
H_sp, W_sp = self.resolution, self.split_size
elif idx == 1:
W_sp, H_sp = self.resolution, self.split_size
else:
print ("ERROR MODE", idx)
exit(0)
self.H_sp = H_sp
self.W_sp = W_sp
self.x_windows = self.resolution // H_sp
self.y_windows = self.resolution // W_sp
self.compress = nn.Linear(dim, num_heads * d)
self.generate = nn.Linear(H_sp * W_sp * d, (H_sp * W_sp) ** 2)
self.activation = nn.Softmax(dim=-2)
self.attn_drop = nn.Dropout(attn_drop)
def forward(self, x):
"""
x: B N C
"""
H_sp, W_sp = self.H_sp, self.W_sp
weights = rearrange(self.compress(x), "b (n1 h n2 w) (m d) -> b (n1 n2 m) (h w d)",
n1=self.x_windows, h=H_sp, n2=self.y_windows, w=W_sp, m=self.num_heads)
weights = rearrange(self.generate(weights), "b N (h1 w1 h2 w2) -> b N (h1 w1) (h2 w2)",
h1=H_sp, w1=W_sp, h2=H_sp, w2=W_sp)
weights = self.activation(weights)
x = rearrange(x, "b (n1 h1 n2 w1) (m c) -> b (n1 n2 m) c (h1 w1)",
n1=self.x_windows, h1=H_sp, n2=self.y_windows, w1=W_sp, m=self.num_heads)
x = torch.matmul(x, weights)
x = rearrange(x, "b (n1 n2 m) d (h2 w2) -> b (n1 h2 n2 w2) (m d)", n1=self.x_windows, n2=self.y_windows, h2=H_sp, w2=W_sp)
return x # B N C
class NoLipCSWinMLPLayer(nn.Module):
def __init__(self, dim, reso, d, num_heads,
split_size=7, mlp_ratio=4., qkv_bias=False,
drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
num_layers=12, last_stage=False):
super().__init__()
self.dim = dim
self.d = d
self.patches_resolution = reso
self.split_size = split_size
self.mlp_ratio = mlp_ratio
self.norm1 = norm_layer(dim)
if self.patches_resolution == split_size:
last_stage = True
if last_stage:
self.branch_num = 1
else:
self.branch_num = 2
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(drop)
if last_stage:
self.attns = nn.ModuleList([
MixingAttention(
dim, resolution=self.patches_resolution, idx = -1,
split_size=split_size, d=d, dim_out=dim, num_heads=num_heads,
attn_drop=attn_drop, proj_drop=drop)
for i in range(self.branch_num)])
else:
self.attns = nn.ModuleList([
MixingAttention(
dim//2, resolution=self.patches_resolution, idx = i,
split_size=split_size, d=d, dim_out=dim//2, num_heads=num_heads,
attn_drop=attn_drop, proj_drop=drop)
for i in range(self.branch_num)])
mlp_hidden_dim = int(dim * mlp_ratio)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H = W = self.patches_resolution
B, N, C = x.shape
assert N == H * W, "flatten img_tokens has wrong size"
img = self.norm1(x)
if self.branch_num == 2:
x1 = self.attns[0](img[:,:,:C//2])
x2 = self.attns[1](img[:,:,C//2:])
attened_x = torch.cat([x1, x2], dim=2)
else:
attened_x = self.attns[0](img)
attened_x = self.proj(attened_x)
x = x + self.drop_path(attened_x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class Merge_Block(nn.Module):
def __init__(self, dim, dim_out, norm_layer=nn.LayerNorm):
super().__init__()
self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1)
self.norm = norm_layer(dim_out)
def forward(self, x):
B, new_HW, C = x.shape
H = W = int(np.sqrt(new_HW))
x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
x = self.conv(x)
B, C = x.shape[:2]
x = x.view(B, C, -1).transpose(-2, -1).contiguous()
x = self.norm(x)
return x
class NoLipCSWinMLPTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=96, depth=[2,2,6,2], split_size = [3,5,7],
d=2, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0.,
drop_path=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, use_chk=False):
super().__init__()
self.use_chk = use_chk
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
heads=num_heads
self.stage1_conv_embed = nn.Sequential(
nn.Conv2d(in_chans, embed_dim, 7, 4, 2),
Rearrange('b c h w -> b (h w) c', h = img_size//4, w = img_size//4),
norm_layer(embed_dim)
)
curr_dim = embed_dim
dpr = [x.item() for x in torch.linspace(0, drop_path, np.sum(depth))] # stochastic depth decay rule
self.stage1 = nn.ModuleList([
NoLipCSWinMLPLayer(
dim=curr_dim, num_heads=heads[0], reso=img_size//4, mlp_ratio=mlp_ratio, d=d,
qkv_bias=qkv_bias, split_size=split_size[0],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[i], norm_layer=norm_layer, num_layers=depth[0])
for i in range(depth[0])])
self.merge1 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
self.stage2 = nn.ModuleList(
[NoLipCSWinMLPLayer(
dim=curr_dim, num_heads=heads[1], reso=img_size//8, mlp_ratio=mlp_ratio, d=d,
qkv_bias=qkv_bias, split_size=split_size[1],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:1])+i], norm_layer=norm_layer, num_layers=depth[1])
for i in range(depth[1])])
self.merge2 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
temp_stage3 = []
temp_stage3.extend(
[NoLipCSWinMLPLayer(
dim=curr_dim, num_heads=heads[2], reso=img_size//16, mlp_ratio=mlp_ratio, d=d,
qkv_bias=qkv_bias, split_size=split_size[2],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:2])+i], norm_layer=norm_layer, num_layers=depth[2])
for i in range(depth[2])])
self.stage3 = nn.ModuleList(temp_stage3)
self.merge3 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
self.stage4 = nn.ModuleList(
[NoLipCSWinMLPLayer(
dim=curr_dim, num_heads=heads[3], reso=img_size//32, mlp_ratio=mlp_ratio, d=d,
qkv_bias=qkv_bias, split_size=split_size[-1],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:-1])+i], norm_layer=norm_layer, last_stage=True, num_layers=depth[-1])
for i in range(depth[-1])])
self.norm = norm_layer(curr_dim)
# Classifier head
self.head = nn.Linear(curr_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.head.weight, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
if self.num_classes != num_classes:
print ('reset head to', num_classes)
self.num_classes = num_classes
self.head = nn.Linear(self.out_dim, num_classes) if num_classes > 0 else nn.Identity()
self.head = self.head.cuda()
trunc_normal_(self.head.weight, std=.02)
if self.head.bias is not None:
nn.init.constant_(self.head.bias, 0)
def forward_features(self, x):
B = x.shape[0]
x = self.stage1_conv_embed(x)
for blk in self.stage1:
if self.use_chk:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
for pre, blocks in zip([self.merge1, self.merge2, self.merge3],
[self.stage2, self.stage3, self.stage4]):
x = pre(x)
for blk in blocks:
if self.use_chk:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
x = self.norm(x)
return torch.mean(x, dim=1)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
### 224 models
@register_model
def nolip_cswinmlp_tiny_224(pretrained=False, **kwargs):
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=64, depth=[2,2,6,2], d=2,
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswinmlp_224']
return model
@register_model
def nolip_cswinmlp_small_224(pretrained=False, **kwargs):
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=64, depth=[2,4,8,2], d=2,
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswinmlp_224']
return model
@register_model
def nolip_cswinmlp_base_224(pretrained=False, **kwargs):
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=96, depth=[2,4,8,2], d=4,
split_size=[1,2,7,7], num_heads=[4,8,16,32], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswinmlp_224']
return model
@register_model
def nolip_cswinmlp_large_224(pretrained=False, **kwargs):
model = NoLipCSWinMLPTransformer(patch_size=4, embed_dim=144, depth=[2,4,12,2], d=4,
split_size=[1,2,7,7], num_heads=[6,12,24,24], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswinmlp_224']
return model
|