File size: 15,634 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
"""Pytorch Densenet implementation w/ tweaks
This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with
fixed kwargs passthrough and addition of dynamic global avg/max pool.
"""
import re
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch.jit.annotations import List
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import BatchNormAct2d, get_norm_act_layer, BlurPool2d, create_classifier
from ._builder import build_model_with_cfg
from ._manipulate import MATCH_PREV_GROUP
from ._registry import register_model, generate_default_cfgs
__all__ = ['DenseNet']
class DenseLayer(nn.Module):
def __init__(
self,
num_input_features,
growth_rate,
bn_size,
norm_layer=BatchNormAct2d,
drop_rate=0.,
grad_checkpointing=False,
):
super(DenseLayer, self).__init__()
self.add_module('norm1', norm_layer(num_input_features)),
self.add_module('conv1', nn.Conv2d(
num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)),
self.add_module('norm2', norm_layer(bn_size * growth_rate)),
self.add_module('conv2', nn.Conv2d(
bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)),
self.drop_rate = float(drop_rate)
self.grad_checkpointing = grad_checkpointing
def bottleneck_fn(self, xs):
# type: (List[torch.Tensor]) -> torch.Tensor
concated_features = torch.cat(xs, 1)
bottleneck_output = self.conv1(self.norm1(concated_features)) # noqa: T484
return bottleneck_output
# todo: rewrite when torchscript supports any
def any_requires_grad(self, x):
# type: (List[torch.Tensor]) -> bool
for tensor in x:
if tensor.requires_grad:
return True
return False
@torch.jit.unused # noqa: T484
def call_checkpoint_bottleneck(self, x):
# type: (List[torch.Tensor]) -> torch.Tensor
def closure(*xs):
return self.bottleneck_fn(xs)
return cp.checkpoint(closure, *x)
@torch.jit._overload_method # noqa: F811
def forward(self, x):
# type: (List[torch.Tensor]) -> (torch.Tensor)
pass
@torch.jit._overload_method # noqa: F811
def forward(self, x):
# type: (torch.Tensor) -> (torch.Tensor)
pass
# torchscript does not yet support *args, so we overload method
# allowing it to take either a List[Tensor] or single Tensor
def forward(self, x): # noqa: F811
if isinstance(x, torch.Tensor):
prev_features = [x]
else:
prev_features = x
if self.grad_checkpointing and self.any_requires_grad(prev_features):
if torch.jit.is_scripting():
raise Exception("Memory Efficient not supported in JIT")
bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
else:
bottleneck_output = self.bottleneck_fn(prev_features)
new_features = self.conv2(self.norm2(bottleneck_output))
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return new_features
class DenseBlock(nn.ModuleDict):
_version = 2
def __init__(
self,
num_layers,
num_input_features,
bn_size,
growth_rate,
norm_layer=BatchNormAct2d,
drop_rate=0.,
grad_checkpointing=False,
):
super(DenseBlock, self).__init__()
for i in range(num_layers):
layer = DenseLayer(
num_input_features + i * growth_rate,
growth_rate=growth_rate,
bn_size=bn_size,
norm_layer=norm_layer,
drop_rate=drop_rate,
grad_checkpointing=grad_checkpointing,
)
self.add_module('denselayer%d' % (i + 1), layer)
def forward(self, init_features):
features = [init_features]
for name, layer in self.items():
new_features = layer(features)
features.append(new_features)
return torch.cat(features, 1)
class DenseTransition(nn.Sequential):
def __init__(
self,
num_input_features,
num_output_features,
norm_layer=BatchNormAct2d,
aa_layer=None,
):
super(DenseTransition, self).__init__()
self.add_module('norm', norm_layer(num_input_features))
self.add_module('conv', nn.Conv2d(
num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
if aa_layer is not None:
self.add_module('pool', aa_layer(num_output_features, stride=2))
else:
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
class DenseNet(nn.Module):
r"""Densenet-BC model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate before classifier layer
proj_drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
"""
def __init__(
self,
growth_rate=32,
block_config=(6, 12, 24, 16),
num_classes=1000,
in_chans=3,
global_pool='avg',
bn_size=4,
stem_type='',
act_layer='relu',
norm_layer='batchnorm2d',
aa_layer=None,
drop_rate=0.,
proj_drop_rate=0.,
memory_efficient=False,
aa_stem_only=True,
):
self.num_classes = num_classes
super(DenseNet, self).__init__()
norm_layer = get_norm_act_layer(norm_layer, act_layer=act_layer)
# Stem
deep_stem = 'deep' in stem_type # 3x3 deep stem
num_init_features = growth_rate * 2
if aa_layer is None:
stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
else:
stem_pool = nn.Sequential(*[
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
aa_layer(channels=num_init_features, stride=2)])
if deep_stem:
stem_chs_1 = stem_chs_2 = growth_rate
if 'tiered' in stem_type:
stem_chs_1 = 3 * (growth_rate // 4)
stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4)
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)),
('norm0', norm_layer(stem_chs_1)),
('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)),
('norm1', norm_layer(stem_chs_2)),
('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)),
('norm2', norm_layer(num_init_features)),
('pool0', stem_pool),
]))
else:
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
('norm0', norm_layer(num_init_features)),
('pool0', stem_pool),
]))
self.feature_info = [
dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')]
current_stride = 4
# DenseBlocks
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = DenseBlock(
num_layers=num_layers,
num_input_features=num_features,
bn_size=bn_size,
growth_rate=growth_rate,
norm_layer=norm_layer,
drop_rate=proj_drop_rate,
grad_checkpointing=memory_efficient,
)
module_name = f'denseblock{(i + 1)}'
self.features.add_module(module_name, block)
num_features = num_features + num_layers * growth_rate
transition_aa_layer = None if aa_stem_only else aa_layer
if i != len(block_config) - 1:
self.feature_info += [
dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)]
current_stride *= 2
trans = DenseTransition(
num_input_features=num_features,
num_output_features=num_features // 2,
norm_layer=norm_layer,
aa_layer=transition_aa_layer,
)
self.features.add_module(f'transition{i + 1}', trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module('norm5', norm_layer(num_features))
self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')]
self.num_features = num_features
# Linear layer
global_pool, classifier = create_classifier(
self.num_features,
self.num_classes,
pool_type=global_pool,
)
self.global_pool = global_pool
self.head_drop = nn.Dropout(drop_rate)
self.classifier = classifier
# Official init from torch repo.
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^features\.conv[012]|features\.norm[012]|features\.pool[012]',
blocks=r'^features\.(?:denseblock|transition)(\d+)' if coarse else [
(r'^features\.denseblock(\d+)\.denselayer(\d+)', None),
(r'^features\.transition(\d+)', MATCH_PREV_GROUP) # FIXME combine with previous denselayer
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for b in self.features.modules():
if isinstance(b, DenseLayer):
b.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.classifier
def reset_classifier(self, num_classes, global_pool='avg'):
self.num_classes = num_classes
self.global_pool, self.classifier = create_classifier(
self.num_features, self.num_classes, pool_type=global_pool)
def forward_features(self, x):
return self.features(x)
def forward(self, x):
x = self.forward_features(x)
x = self.global_pool(x)
x = self.head_drop(x)
x = self.classifier(x)
return x
def _filter_torchvision_pretrained(state_dict):
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
return state_dict
def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs):
kwargs['growth_rate'] = growth_rate
kwargs['block_config'] = block_config
return build_model_with_cfg(
DenseNet,
variant,
pretrained,
feature_cfg=dict(flatten_sequential=True),
pretrained_filter_fn=_filter_torchvision_pretrained,
**kwargs,
)
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'features.conv0', 'classifier': 'classifier', **kwargs,
}
default_cfgs = generate_default_cfgs({
'densenet121.ra_in1k': _cfg(
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'densenetblur121d.ra_in1k': _cfg(
hf_hub_id='timm/',
test_input_size=(3, 288, 288), test_crop_pct=0.95),
'densenet264d.untrained': _cfg(),
'densenet121.tv_in1k': _cfg(hf_hub_id='timm/'),
'densenet169.tv_in1k': _cfg(hf_hub_id='timm/'),
'densenet201.tv_in1k': _cfg(hf_hub_id='timm/'),
'densenet161.tv_in1k': _cfg(hf_hub_id='timm/'),
})
@register_model
def densenet121(pretrained=False, **kwargs) -> DenseNet:
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = _create_densenet(
'densenet121', growth_rate=32, block_config=(6, 12, 24, 16), pretrained=pretrained, **kwargs)
return model
@register_model
def densenetblur121d(pretrained=False, **kwargs) -> DenseNet:
r"""Densenet-121 w/ blur-pooling & 3-layer 3x3 stem
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = _create_densenet(
'densenetblur121d', growth_rate=32, block_config=(6, 12, 24, 16), pretrained=pretrained,
stem_type='deep', aa_layer=BlurPool2d, **kwargs)
return model
@register_model
def densenet169(pretrained=False, **kwargs) -> DenseNet:
r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = _create_densenet(
'densenet169', growth_rate=32, block_config=(6, 12, 32, 32), pretrained=pretrained, **kwargs)
return model
@register_model
def densenet201(pretrained=False, **kwargs) -> DenseNet:
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = _create_densenet(
'densenet201', growth_rate=32, block_config=(6, 12, 48, 32), pretrained=pretrained, **kwargs)
return model
@register_model
def densenet161(pretrained=False, **kwargs) -> DenseNet:
r"""Densenet-161 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = _create_densenet(
'densenet161', growth_rate=48, block_config=(6, 12, 36, 24), pretrained=pretrained, **kwargs)
return model
@register_model
def densenet264d(pretrained=False, **kwargs) -> DenseNet:
r"""Densenet-264 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = _create_densenet(
'densenet264d', growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep', pretrained=pretrained, **kwargs)
return model
|