File size: 7,697 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from functools import partial

import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from ._builder import build_model_with_cfg
from ._builder import pretrained_cfg_for_features
from ._efficientnet_blocks import SqueezeExcite
from ._efficientnet_builder import decode_arch_def, resolve_act_layer, resolve_bn_args, round_channels
from ._registry import register_model, generate_default_cfgs
from .mobilenetv3 import MobileNetV3, MobileNetV3Features

__all__ = []  # model_registry will add each entrypoint fn to this


def _gen_hardcorenas(pretrained, variant, arch_def, **kwargs):
    """Creates a hardcorenas model

    Ref impl: https://github.com/Alibaba-MIIL/HardCoReNAS
    Paper: https://arxiv.org/abs/2102.11646

    """
    num_features = 1280
    se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels)
    model_kwargs = dict(
        block_args=decode_arch_def(arch_def),
        num_features=num_features,
        stem_size=32,
        norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)),
        act_layer=resolve_act_layer(kwargs, 'hard_swish'),
        se_layer=se_layer,
        **kwargs,
    )

    features_only = False
    model_cls = MobileNetV3
    kwargs_filter = None
    if model_kwargs.pop('features_only', False):
        features_only = True
        kwargs_filter = ('num_classes', 'num_features', 'global_pool', 'head_conv', 'head_bias', 'global_pool')
        model_cls = MobileNetV3Features
    model = build_model_with_cfg(
        model_cls,
        variant,
        pretrained,
        pretrained_strict=not features_only,
        kwargs_filter=kwargs_filter,
        **model_kwargs,
    )
    if features_only:
        model.default_cfg = pretrained_cfg_for_features(model.default_cfg)
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bilinear',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'conv_stem', 'classifier': 'classifier',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'hardcorenas_a.miil_green_in1k': _cfg(hf_hub_id='timm/'),
    'hardcorenas_b.miil_green_in1k': _cfg(hf_hub_id='timm/'),
    'hardcorenas_c.miil_green_in1k': _cfg(hf_hub_id='timm/'),
    'hardcorenas_d.miil_green_in1k': _cfg(hf_hub_id='timm/'),
    'hardcorenas_e.miil_green_in1k': _cfg(hf_hub_id='timm/'),
    'hardcorenas_f.miil_green_in1k': _cfg(hf_hub_id='timm/'),
})


@register_model
def hardcorenas_a(pretrained=False, **kwargs) -> MobileNetV3:
    """ hardcorenas_A """
    arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
                ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e6_c40_nre_se0.25'],
                ['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25'],
                ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25'],
                ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
    model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_a', arch_def=arch_def, **kwargs)
    return model


@register_model
def hardcorenas_b(pretrained=False, **kwargs) -> MobileNetV3:
    """ hardcorenas_B """
    arch_def = [['ds_r1_k3_s1_e1_c16_nre'],
                ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25', 'ir_r1_k3_s1_e3_c24_nre'],
                ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre'],
                ['ir_r1_k5_s2_e3_c80', 'ir_r1_k5_s1_e3_c80', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'],
                ['ir_r1_k5_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'],
                ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'],
                ['cn_r1_k1_s1_c960']]
    model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_b', arch_def=arch_def, **kwargs)
    return model


@register_model
def hardcorenas_c(pretrained=False, **kwargs) -> MobileNetV3:
    """ hardcorenas_C """
    arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
                ['ir_r1_k5_s2_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre', 'ir_r1_k5_s1_e3_c40_nre',
                 'ir_r1_k5_s1_e3_c40_nre'],
                ['ir_r1_k5_s2_e4_c80', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80', 'ir_r1_k3_s1_e3_c80'],
                ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112', 'ir_r1_k3_s1_e3_c112'],
                ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e3_c192_se0.25'],
                ['cn_r1_k1_s1_c960']]
    model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_c', arch_def=arch_def, **kwargs)
    return model


@register_model
def hardcorenas_d(pretrained=False, **kwargs) -> MobileNetV3:
    """ hardcorenas_D """
    arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
                ['ir_r1_k5_s2_e3_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k3_s1_e3_c40_nre_se0.25'],
                ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25',
                 'ir_r1_k3_s1_e3_c80_se0.25'],
                ['ir_r1_k3_s1_e4_c112_se0.25', 'ir_r1_k5_s1_e4_c112_se0.25', 'ir_r1_k3_s1_e3_c112_se0.25',
                 'ir_r1_k5_s1_e3_c112_se0.25'],
                ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25',
                 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
    model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_d', arch_def=arch_def, **kwargs)
    return model


@register_model
def hardcorenas_e(pretrained=False, **kwargs) -> MobileNetV3:
    """ hardcorenas_E """
    arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
                ['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25', 'ir_r1_k5_s1_e4_c40_nre_se0.25',
                 'ir_r1_k3_s1_e3_c40_nre_se0.25'], ['ir_r1_k5_s2_e4_c80_se0.25', 'ir_r1_k3_s1_e6_c80_se0.25'],
                ['ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25',
                 'ir_r1_k5_s1_e3_c112_se0.25'],
                ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25',
                 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
    model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_e', arch_def=arch_def, **kwargs)
    return model


@register_model
def hardcorenas_f(pretrained=False, **kwargs) -> MobileNetV3:
    """ hardcorenas_F """
    arch_def = [['ds_r1_k3_s1_e1_c16_nre'], ['ir_r1_k5_s2_e3_c24_nre_se0.25', 'ir_r1_k5_s1_e3_c24_nre_se0.25'],
                ['ir_r1_k5_s2_e6_c40_nre_se0.25', 'ir_r1_k5_s1_e6_c40_nre_se0.25'],
                ['ir_r1_k5_s2_e6_c80_se0.25', 'ir_r1_k5_s1_e6_c80_se0.25', 'ir_r1_k3_s1_e3_c80_se0.25',
                 'ir_r1_k3_s1_e3_c80_se0.25'],
                ['ir_r1_k3_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25', 'ir_r1_k5_s1_e6_c112_se0.25',
                 'ir_r1_k3_s1_e3_c112_se0.25'],
                ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k3_s1_e6_c192_se0.25',
                 'ir_r1_k3_s1_e6_c192_se0.25'], ['cn_r1_k1_s1_c960']]
    model = _gen_hardcorenas(pretrained=pretrained, variant='hardcorenas_f', arch_def=arch_def, **kwargs)
    return model