import numpy as np | |
from pytorch_grad_cam.base_cam import BaseCAM | |
class RandomCAM(BaseCAM): | |
def __init__(self, model, target_layers, use_cuda=False, | |
reshape_transform=None): | |
super( | |
RandomCAM, | |
self).__init__( | |
model, | |
target_layers, | |
use_cuda, | |
reshape_transform) | |
def get_cam_weights(self, | |
input_tensor, | |
target_layer, | |
target_category, | |
activations, | |
grads): | |
return np.random.uniform(-1, 1, size=(grads.shape[0], grads.shape[1])) | |