cs-mixer / timm /models /_factory.py
crrrr30's picture
Upload folder using huggingface_hub
da716ed
import os
from typing import Any, Dict, Optional, Union
from urllib.parse import urlsplit
from timm.layers import set_layer_config
from ._helpers import load_checkpoint
from ._hub import load_model_config_from_hf
from ._pretrained import PretrainedCfg
from ._registry import is_model, model_entrypoint, split_model_name_tag
__all__ = ['parse_model_name', 'safe_model_name', 'create_model']
def parse_model_name(model_name: str):
if model_name.startswith('hf_hub'):
# NOTE for backwards compat, deprecate hf_hub use
model_name = model_name.replace('hf_hub', 'hf-hub')
parsed = urlsplit(model_name)
assert parsed.scheme in ('', 'timm', 'hf-hub')
if parsed.scheme == 'hf-hub':
# FIXME may use fragment as revision, currently `@` in URI path
return parsed.scheme, parsed.path
else:
model_name = os.path.split(parsed.path)[-1]
return 'timm', model_name
def safe_model_name(model_name: str, remove_source: bool = True):
# return a filename / path safe model name
def make_safe(name):
return ''.join(c if c.isalnum() else '_' for c in name).rstrip('_')
if remove_source:
model_name = parse_model_name(model_name)[-1]
return make_safe(model_name)
def create_model(
model_name: str,
pretrained: bool = False,
pretrained_cfg: Optional[Union[str, Dict[str, Any], PretrainedCfg]] = None,
pretrained_cfg_overlay: Optional[Dict[str, Any]] = None,
checkpoint_path: str = '',
scriptable: Optional[bool] = None,
exportable: Optional[bool] = None,
no_jit: Optional[bool] = None,
**kwargs,
):
"""Create a model.
Lookup model's entrypoint function and pass relevant args to create a new model.
<Tip>
**kwargs will be passed through entrypoint fn to ``timm.models.build_model_with_cfg()``
and then the model class __init__(). kwargs values set to None are pruned before passing.
</Tip>
Args:
model_name: Name of model to instantiate.
pretrained: If set to `True`, load pretrained ImageNet-1k weights.
pretrained_cfg: Pass in an external pretrained_cfg for model.
pretrained_cfg_overlay: Replace key-values in base pretrained_cfg with these.
checkpoint_path: Path of checkpoint to load _after_ the model is initialized.
scriptable: Set layer config so that model is jit scriptable (not working for all models yet).
exportable: Set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet).
no_jit: Set layer config so that model doesn't utilize jit scripted layers (so far activations only).
Keyword Args:
drop_rate (float): Classifier dropout rate for training.
drop_path_rate (float): Stochastic depth drop rate for training.
global_pool (str): Classifier global pooling type.
Example:
```py
>>> from timm import create_model
>>> # Create a MobileNetV3-Large model with no pretrained weights.
>>> model = create_model('mobilenetv3_large_100')
>>> # Create a MobileNetV3-Large model with pretrained weights.
>>> model = create_model('mobilenetv3_large_100', pretrained=True)
>>> model.num_classes
1000
>>> # Create a MobileNetV3-Large model with pretrained weights and a new head with 10 classes.
>>> model = create_model('mobilenetv3_large_100', pretrained=True, num_classes=10)
>>> model.num_classes
10
```
"""
# Parameters that aren't supported by all models or are intended to only override model defaults if set
# should default to None in command line args/cfg. Remove them if they are present and not set so that
# non-supporting models don't break and default args remain in effect.
kwargs = {k: v for k, v in kwargs.items() if v is not None}
model_source, model_name = parse_model_name(model_name)
if model_source == 'hf-hub':
assert not pretrained_cfg, 'pretrained_cfg should not be set when sourcing model from Hugging Face Hub.'
# For model names specified in the form `hf-hub:path/architecture_name@revision`,
# load model weights + pretrained_cfg from Hugging Face hub.
pretrained_cfg, model_name = load_model_config_from_hf(model_name)
else:
model_name, pretrained_tag = split_model_name_tag(model_name)
if pretrained_tag and not pretrained_cfg:
# a valid pretrained_cfg argument takes priority over tag in model name
pretrained_cfg = pretrained_tag
if not is_model(model_name):
raise RuntimeError('Unknown model (%s)' % model_name)
create_fn = model_entrypoint(model_name)
with set_layer_config(scriptable=scriptable, exportable=exportable, no_jit=no_jit):
model = create_fn(
pretrained=pretrained,
pretrained_cfg=pretrained_cfg,
pretrained_cfg_overlay=pretrained_cfg_overlay,
**kwargs,
)
if checkpoint_path:
load_checkpoint(model, checkpoint_path)
return model