cs-mixer / timm /models /dynamixer.py
crrrr30's picture
Upload folder using huggingface_hub
da716ed
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
import torch.utils.checkpoint as checkpoint
import numpy as np
from einops import rearrange, einsum
from einops._torch_specific import allow_ops_in_compiled_graph # requires einops>=0.6.1
allow_ops_in_compiled_graph()
try:
from fvcore.nn.jit_handles import get_shape, conv_flop_count
except ImportError:
has_fvcore = False
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .96, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
**kwargs
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, overlap=False):
super().__init__()
if overlap:
padding = (patch_size - 1) // 2
stride = (patch_size + 1) // 2
else:
padding = 0
stride = patch_size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, padding=padding, stride=stride)
def forward(self, x):
x = self.proj(x) # B, C, H, W
return x
class Downsample(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, in_embed_dim, out_embed_dim, patch_size, overlap=False):
super().__init__()
if overlap:
assert patch_size==2
self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=3, padding=1, stride=2)
else:
self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = x.permute(0, 3, 1, 2)
x = self.proj(x) # B, C, H, W
x = x.permute(0, 2, 3, 1)
return x
class DynaMixerOp(nn.Module):
def __init__(self, dim, seq_len, num_head, reduced_dim=2):
super().__init__()
self.dim = dim
self.seq_len = seq_len
self.num_head = num_head
self.reduced_dim = reduced_dim
self.out = nn.Linear(dim, dim)
self.compress = nn.Linear(dim, num_head * reduced_dim)
self.generate = nn.Linear(seq_len * reduced_dim, seq_len * seq_len)
self.activation = nn.Softmax(dim=-2)
def forward(self, x):
B, L, C = x.shape
weights = self.compress(x).reshape(B, L, self.num_head, self.reduced_dim).permute(0, 2, 1, 3).reshape(B, self.num_head, -1)
weights = self.generate(weights).reshape(B, self.num_head, L, L)
weights = self.activation(weights)
x = x.reshape(B, L, self.num_head, C//self.num_head).permute(0, 2, 3, 1)
x = torch.matmul(x, weights)
x = x.permute(0, 3, 1, 2).reshape(B, L, C)
x = self.out(x)
return x
class DynaMixerBlock(nn.Module):
def __init__(self, dim, resolution=32, num_head=8, reduced_dim=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.resolution = resolution
self.num_head = num_head
self.mix_h = DynaMixerOp(dim, resolution, self.num_head, reduced_dim=reduced_dim)
self.mix_w = DynaMixerOp(dim, resolution, self.num_head, reduced_dim=reduced_dim)
self.mlp_c = nn.Linear(dim, dim, bias=qkv_bias)
self.reweight = Mlp(dim, dim // 4, dim * 3)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, H, W, C = x.shape
h = self.mix_h(x.permute(0, 2, 1, 3).reshape(-1, H, C)).reshape(B, W, H, C).permute(0, 2, 1, 3)
w = self.mix_w(x.reshape(-1, W, C)).reshape(B, H, W, C)
c = self.mlp_c(x)
a = (h + w + c).permute(0, 3, 1, 2).flatten(2).mean(2)
a = self.reweight(a).reshape(B, C, 3).permute(2, 0, 1).softmax(dim=0).unsqueeze(2).unsqueeze(2)
x = h * a[0] + w * a[1] + c * a[2]
x = self.proj(x)
x = self.proj_drop(x)
return x
class VisionBlock(nn.Module):
def __init__(self, dim, resolution, num_head, reduced_dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=DynaMixerBlock):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = mlp_fn(dim, resolution=resolution, num_head=num_head, reduced_dim=reduced_dim, qkv_bias=qkv_bias, qk_scale=None,
attn_drop=attn_drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_lam = skip_lam
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam
x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam
return x
def basic_blocks(dim, index, layers, resolution, num_head, reduced_dim, mlp_ratio=3., qkv_bias=False, qk_scale=None, \
attn_drop=0, drop_path_rate=0., skip_lam=1.0, mlp_fn=DynaMixerBlock, **kwargs):
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
blocks.append(VisionBlock(dim, resolution, num_head, reduced_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, \
attn_drop=attn_drop, drop_path=block_dpr, skip_lam=skip_lam, mlp_fn=mlp_fn))
blocks = nn.Sequential(*blocks)
return blocks
class VisionModel(nn.Module):
def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=None,
transitions=None, resolutions=None, num_heads=None, reduced_dims=None, mlp_ratios=None, skip_lam=1.0,
qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=nn.LayerNorm, mlp_fn=DynaMixerBlock, overlap=False, **kwargs):
super().__init__()
self.num_classes = num_classes
self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans,
embed_dim=embed_dims[0], overlap=overlap)
network = []
for i in range(len(layers)):
stage = basic_blocks(embed_dims[i], i, layers, resolutions[i], num_heads[i], reduced_dims[i],
mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop_rate,
drop_path_rate=drop_path_rate, norm_layer=norm_layer, skip_lam=skip_lam, mlp_fn=mlp_fn)
network.append(stage)
if i >= len(layers) - 1:
break
if transitions[i] or embed_dims[i] != embed_dims[i + 1]:
patch_size = 2 if transitions[i] else 1
network.append(Downsample(embed_dims[i], embed_dims[i + 1], patch_size, overlap=overlap))
self.network = nn.ModuleList(network)
self.norm = norm_layer(embed_dims[-1])
# Classifier head
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_embeddings(self, x):
x = self.patch_embed(x)
# B,C,H,W-> B,H,W,C
x = x.permute(0, 2, 3, 1)
return x
def forward_tokens(self, x):
for idx, block in enumerate(self.network):
x = block(x)
B, H, W, C = x.shape
x = x.reshape(B, -1, C)
return x
def forward(self, x):
x = self.forward_embeddings(x)
# B, H, W, C -> B, N, C
x = self.forward_tokens(x)
x = self.norm(x)
return self.head(x.mean(1))
default_cfgs = {
'DynaMixer_S': _cfg(crop_pct=0.9),
'DynaMixer_M': _cfg(crop_pct=0.9),
'DynaMixer_L': _cfg(crop_pct=0.875),
}
@register_model
def dynamixer_s(pretrained=False, **kwargs):
layers = [4, 3, 8, 3]
transitions = [True, False, False, False]
resolutions = [32, 16, 16, 16]
num_heads = [8, 16, 16, 16]
mlp_ratios = [3, 3, 3, 3]
embed_dims = [192, 384, 384, 384]
reduced_dims = [2, 2, 2, 2]
model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios,
mlp_fn=DynaMixerBlock, **kwargs)
model.default_cfg = default_cfgs['DynaMixer_S']
return model
@register_model
def dynamixer_m(pretrained=False, **kwargs):
layers = [4, 3, 14, 3]
transitions = [False, True, False, False]
resolutions = [32, 32, 16, 16]
num_heads = [8, 8, 16, 16]
mlp_ratios = [3, 3, 3, 3]
embed_dims = [256, 256, 512, 512]
reduced_dims = [2, 2, 2, 2]
model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios,
mlp_fn=DynaMixerBlock, **kwargs)
model.default_cfg = default_cfgs['DynaMixer_M']
return model
@register_model
def dynamixer_l(pretrained=False, **kwargs):
layers = [8, 8, 16, 4]
transitions = [True, False, False, False]
resolutions = [32, 16, 16, 16]
num_heads = [8, 16, 16, 16]
mlp_ratios = [3, 3, 3, 3]
embed_dims = [256, 512, 512, 512]
reduced_dims = [8, 8, 8, 8]
model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios,
mlp_fn=DynaMixerBlock, **kwargs)
model.default_cfg = default_cfgs['DynaMixer_L']
return model