|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.models.helpers import load_pretrained |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from timm.models.registry import register_model |
|
import torch.utils.checkpoint as checkpoint |
|
import numpy as np |
|
from einops import rearrange, einsum |
|
from einops._torch_specific import allow_ops_in_compiled_graph |
|
allow_ops_in_compiled_graph() |
|
|
|
try: |
|
from fvcore.nn.jit_handles import get_shape, conv_flop_count |
|
except ImportError: |
|
has_fvcore = False |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .96, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, overlap=False): |
|
super().__init__() |
|
if overlap: |
|
padding = (patch_size - 1) // 2 |
|
stride = (patch_size + 1) // 2 |
|
else: |
|
padding = 0 |
|
stride = patch_size |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, padding=padding, stride=stride) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, in_embed_dim, out_embed_dim, patch_size, overlap=False): |
|
super().__init__() |
|
if overlap: |
|
assert patch_size==2 |
|
self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=3, padding=1, stride=2) |
|
else: |
|
self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
x = x.permute(0, 3, 1, 2) |
|
x = self.proj(x) |
|
x = x.permute(0, 2, 3, 1) |
|
return x |
|
|
|
|
|
class DynaMixerOp(nn.Module): |
|
def __init__(self, dim, seq_len, num_head, reduced_dim=2): |
|
super().__init__() |
|
self.dim = dim |
|
self.seq_len = seq_len |
|
self.num_head = num_head |
|
self.reduced_dim = reduced_dim |
|
self.out = nn.Linear(dim, dim) |
|
self.compress = nn.Linear(dim, num_head * reduced_dim) |
|
self.generate = nn.Linear(seq_len * reduced_dim, seq_len * seq_len) |
|
self.activation = nn.Softmax(dim=-2) |
|
|
|
def forward(self, x): |
|
B, L, C = x.shape |
|
weights = self.compress(x).reshape(B, L, self.num_head, self.reduced_dim).permute(0, 2, 1, 3).reshape(B, self.num_head, -1) |
|
weights = self.generate(weights).reshape(B, self.num_head, L, L) |
|
weights = self.activation(weights) |
|
x = x.reshape(B, L, self.num_head, C//self.num_head).permute(0, 2, 3, 1) |
|
x = torch.matmul(x, weights) |
|
x = x.permute(0, 3, 1, 2).reshape(B, L, C) |
|
x = self.out(x) |
|
return x |
|
|
|
|
|
class DynaMixerBlock(nn.Module): |
|
def __init__(self, dim, resolution=32, num_head=8, reduced_dim=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.resolution = resolution |
|
self.num_head = num_head |
|
self.mix_h = DynaMixerOp(dim, resolution, self.num_head, reduced_dim=reduced_dim) |
|
self.mix_w = DynaMixerOp(dim, resolution, self.num_head, reduced_dim=reduced_dim) |
|
self.mlp_c = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.reweight = Mlp(dim, dim // 4, dim * 3) |
|
|
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, H, W, C = x.shape |
|
h = self.mix_h(x.permute(0, 2, 1, 3).reshape(-1, H, C)).reshape(B, W, H, C).permute(0, 2, 1, 3) |
|
w = self.mix_w(x.reshape(-1, W, C)).reshape(B, H, W, C) |
|
c = self.mlp_c(x) |
|
|
|
a = (h + w + c).permute(0, 3, 1, 2).flatten(2).mean(2) |
|
a = self.reweight(a).reshape(B, C, 3).permute(2, 0, 1).softmax(dim=0).unsqueeze(2).unsqueeze(2) |
|
|
|
x = h * a[0] + w * a[1] + c * a[2] |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class VisionBlock(nn.Module): |
|
|
|
def __init__(self, dim, resolution, num_head, reduced_dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=DynaMixerBlock): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = mlp_fn(dim, resolution=resolution, num_head=num_head, reduced_dim=reduced_dim, qkv_bias=qkv_bias, qk_scale=None, |
|
attn_drop=attn_drop) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer) |
|
self.skip_lam = skip_lam |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam |
|
return x |
|
|
|
|
|
def basic_blocks(dim, index, layers, resolution, num_head, reduced_dim, mlp_ratio=3., qkv_bias=False, qk_scale=None, \ |
|
attn_drop=0, drop_path_rate=0., skip_lam=1.0, mlp_fn=DynaMixerBlock, **kwargs): |
|
blocks = [] |
|
|
|
for block_idx in range(layers[index]): |
|
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) |
|
blocks.append(VisionBlock(dim, resolution, num_head, reduced_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, \ |
|
attn_drop=attn_drop, drop_path=block_dpr, skip_lam=skip_lam, mlp_fn=mlp_fn)) |
|
|
|
blocks = nn.Sequential(*blocks) |
|
|
|
return blocks |
|
|
|
|
|
class VisionModel(nn.Module): |
|
|
|
def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=None, |
|
transitions=None, resolutions=None, num_heads=None, reduced_dims=None, mlp_ratios=None, skip_lam=1.0, |
|
qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., |
|
norm_layer=nn.LayerNorm, mlp_fn=DynaMixerBlock, overlap=False, **kwargs): |
|
|
|
super().__init__() |
|
self.num_classes = num_classes |
|
|
|
self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, |
|
embed_dim=embed_dims[0], overlap=overlap) |
|
|
|
network = [] |
|
for i in range(len(layers)): |
|
stage = basic_blocks(embed_dims[i], i, layers, resolutions[i], num_heads[i], reduced_dims[i], |
|
mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop_rate, |
|
drop_path_rate=drop_path_rate, norm_layer=norm_layer, skip_lam=skip_lam, mlp_fn=mlp_fn) |
|
network.append(stage) |
|
if i >= len(layers) - 1: |
|
break |
|
if transitions[i] or embed_dims[i] != embed_dims[i + 1]: |
|
patch_size = 2 if transitions[i] else 1 |
|
network.append(Downsample(embed_dims[i], embed_dims[i + 1], patch_size, overlap=overlap)) |
|
|
|
self.network = nn.ModuleList(network) |
|
|
|
self.norm = norm_layer(embed_dims[-1]) |
|
|
|
|
|
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_embeddings(self, x): |
|
x = self.patch_embed(x) |
|
|
|
x = x.permute(0, 2, 3, 1) |
|
return x |
|
|
|
def forward_tokens(self, x): |
|
for idx, block in enumerate(self.network): |
|
x = block(x) |
|
B, H, W, C = x.shape |
|
x = x.reshape(B, -1, C) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_embeddings(x) |
|
|
|
x = self.forward_tokens(x) |
|
x = self.norm(x) |
|
return self.head(x.mean(1)) |
|
|
|
|
|
default_cfgs = { |
|
'DynaMixer_S': _cfg(crop_pct=0.9), |
|
'DynaMixer_M': _cfg(crop_pct=0.9), |
|
'DynaMixer_L': _cfg(crop_pct=0.875), |
|
} |
|
|
|
|
|
@register_model |
|
def dynamixer_s(pretrained=False, **kwargs): |
|
layers = [4, 3, 8, 3] |
|
transitions = [True, False, False, False] |
|
resolutions = [32, 16, 16, 16] |
|
num_heads = [8, 16, 16, 16] |
|
mlp_ratios = [3, 3, 3, 3] |
|
embed_dims = [192, 384, 384, 384] |
|
reduced_dims = [2, 2, 2, 2] |
|
model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions, |
|
resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios, |
|
mlp_fn=DynaMixerBlock, **kwargs) |
|
model.default_cfg = default_cfgs['DynaMixer_S'] |
|
return model |
|
|
|
|
|
@register_model |
|
def dynamixer_m(pretrained=False, **kwargs): |
|
layers = [4, 3, 14, 3] |
|
transitions = [False, True, False, False] |
|
resolutions = [32, 32, 16, 16] |
|
num_heads = [8, 8, 16, 16] |
|
mlp_ratios = [3, 3, 3, 3] |
|
embed_dims = [256, 256, 512, 512] |
|
reduced_dims = [2, 2, 2, 2] |
|
model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions, |
|
resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios, |
|
mlp_fn=DynaMixerBlock, **kwargs) |
|
model.default_cfg = default_cfgs['DynaMixer_M'] |
|
return model |
|
|
|
|
|
@register_model |
|
def dynamixer_l(pretrained=False, **kwargs): |
|
layers = [8, 8, 16, 4] |
|
transitions = [True, False, False, False] |
|
resolutions = [32, 16, 16, 16] |
|
num_heads = [8, 16, 16, 16] |
|
mlp_ratios = [3, 3, 3, 3] |
|
embed_dims = [256, 512, 512, 512] |
|
reduced_dims = [8, 8, 8, 8] |
|
model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions, |
|
resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios, |
|
mlp_fn=DynaMixerBlock, **kwargs) |
|
model.default_cfg = default_cfgs['DynaMixer_L'] |
|
return model |