import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.helpers import load_pretrained from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model import torch.utils.checkpoint as checkpoint import numpy as np from einops import rearrange from torch import einsum from einops._torch_specific import allow_ops_in_compiled_graph # requires einops>=0.6.1 allow_ops_in_compiled_graph() def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .96, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head', **kwargs } class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, overlap=False): super().__init__() if overlap: padding = (patch_size - 1) // 2 stride = (patch_size + 1) // 2 else: padding = 0 stride = patch_size self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, padding=padding, stride=stride) def forward(self, x): x = self.proj(x) # B, C, H, W return x class Downsample(nn.Module): """ Image to Patch Embedding """ def __init__(self, in_embed_dim, out_embed_dim, patch_size, overlap=False): super().__init__() if overlap: assert patch_size==2 self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=3, padding=1, stride=2) else: self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = x.permute(0, 3, 1, 2) x = self.proj(x) # B, C, H, W x = x.permute(0, 2, 3, 1) return x class Sum(nn.Module): def __init__(self, *fns): super().__init__() assert len(fns) == 2 self.fns = nn.ModuleList(fns) def forward(self, x): return self.fns[0](x) + self.fns[1](x) class MixingAttention(nn.Module): def __init__(self, dim, resolution, idx, num_heads=8, split_size=2, dim_out=None, d=2, d_i=32, init_eps=1e-3, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.dim_out = dim_out or dim self.num_heads = num_heads self.resolution = resolution self.split_size = split_size assert self.resolution % self.split_size == 0 self.d = d if idx == -1: H_sp, W_sp = self.resolution, self.resolution elif idx == 0: H_sp, W_sp = self.resolution, self.split_size elif idx == 1: W_sp, H_sp = self.resolution, self.split_size else: print ("ERROR MODE", idx) exit(0) self.H_sp = H_sp self.W_sp = W_sp self.x_windows = self.resolution // H_sp self.y_windows = self.resolution // W_sp self.proj_in = nn.Linear(dim, dim * 2) L = H_sp * W_sp self.weight = nn.Parameter(torch.empty(num_heads, L, L)) init_eps /= L nn.init.uniform_(self.weight, -init_eps, init_eps) self.bias = nn.Parameter(torch.ones(num_heads, L)) def forward(self, x): """ x: B N C """ H_sp, W_sp = self.H_sp, self.W_sp x = rearrange(x, "b (n1 h) (n2 w) d -> (b n1 n2) (h w) d", n1=self.x_windows, h=H_sp, n2=self.y_windows, w=W_sp) res, gate = self.proj_in(x).chunk(2, dim=-1) gate = rearrange(gate, 'b n (m d) -> b m n d', m=self.num_heads) gate = einsum('b m n d, m n p -> b m p d', gate, self.weight) gate = gate + rearrange(self.bias, 'm n -> () m n ()') gate = rearrange(gate, 'b m n d -> b n (m d)') return rearrange(gate * res, "(b n1 n2) (h w) d -> b (n1 h) (n2 w) d", n1=self.x_windows, h=H_sp, n2=self.y_windows, w=W_sp) # B N C class DynaMixerOp(nn.Module): def __init__(self, dim, seq_len, num_head, reduced_dim=2): super().__init__() self.dim = dim self.seq_len = seq_len self.num_head = num_head self.reduced_dim = reduced_dim self.out = nn.Linear(dim, dim) self.compress = nn.Linear(dim, num_head * reduced_dim) self.generate = nn.Linear(seq_len * reduced_dim, seq_len * seq_len) self.activation = nn.Softmax(dim=-2) def forward(self, x): B, L, C = x.shape weights = self.compress(x).reshape(B, L, self.num_head, self.reduced_dim).permute(0, 2, 1, 3).reshape(B, self.num_head, -1) weights = self.generate(weights).reshape(B, self.num_head, L, L) weights = self.activation(weights) x = x.reshape(B, L, self.num_head, C//self.num_head).permute(0, 2, 3, 1) x = torch.matmul(x, weights) x = x.permute(0, 3, 1, 2).reshape(B, L, C) x = self.out(x) return x class DynaMixerBlock(nn.Module): def __init__(self, dim, resolution=32, num_head=8, reduced_dim=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.resolution = resolution self.num_head = num_head self.mix_h = MixingAttention(dim, resolution, idx=0, split_size=4, num_heads=self.num_head, d=reduced_dim) self.mix_w = MixingAttention(dim, resolution, idx=1, split_size=4, num_heads=self.num_head, d=reduced_dim) # self.mix_w = DynaMixerOp(dim, resolution, self.num_head, reduced_dim=reduced_dim) self.mlp_c = nn.Linear(dim, dim, bias=qkv_bias) self.reweight = Mlp(dim, dim // 4, dim * 3) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, H, W, C = x.shape h = self.mix_h(x) w = self.mix_w(x) c = self.mlp_c(x) a = (h + w + c).permute(0, 3, 1, 2).flatten(2).mean(2) a = self.reweight(a).reshape(B, C, 3).permute(2, 0, 1).softmax(dim=0).unsqueeze(2).unsqueeze(2) x = h * a[0] + w * a[1] + c * a[2] x = self.proj(x) x = self.proj_drop(x) return x class VisionBlock(nn.Module): def __init__(self, dim, resolution, num_head, reduced_dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=DynaMixerBlock): super().__init__() self.norm1 = norm_layer(dim) self.attn = mlp_fn(dim, resolution=resolution, num_head=num_head, reduced_dim=reduced_dim, qkv_bias=qkv_bias, qk_scale=None, attn_drop=attn_drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer) self.skip_lam = skip_lam def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam return x def basic_blocks(dim, index, layers, resolution, num_head, reduced_dim, mlp_ratio=3., qkv_bias=False, qk_scale=None, \ attn_drop=0, drop_path_rate=0., skip_lam=1.0, mlp_fn=DynaMixerBlock, **kwargs): blocks = [] for block_idx in range(layers[index]): block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1) blocks.append(VisionBlock(dim, resolution, num_head, reduced_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, \ attn_drop=attn_drop, drop_path=block_dpr, skip_lam=skip_lam, mlp_fn=mlp_fn)) blocks = nn.Sequential(*blocks) return blocks class VisionModel(nn.Module): def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=None, transitions=None, resolutions=None, num_heads=None, reduced_dims=None, mlp_ratios=None, skip_lam=1.0, qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, mlp_fn=DynaMixerBlock, overlap=False, **kwargs): super().__init__() self.num_classes = num_classes self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dims[0], overlap=overlap) network = [] for i in range(len(layers)): stage = basic_blocks(embed_dims[i], i, layers, resolutions[i], num_heads[i], reduced_dims[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop_rate, drop_path_rate=drop_path_rate, norm_layer=norm_layer, skip_lam=skip_lam, mlp_fn=mlp_fn) network.append(stage) if i >= len(layers) - 1: break if transitions[i] or embed_dims[i] != embed_dims[i + 1]: patch_size = 2 if transitions[i] else 1 network.append(Downsample(embed_dims[i], embed_dims[i + 1], patch_size, overlap=overlap)) self.network = nn.ModuleList(network) self.norm = norm_layer(embed_dims[-1]) # Classifier head self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_embeddings(self, x): x = self.patch_embed(x) # B,C,H,W-> B,H,W,C x = x.permute(0, 2, 3, 1) return x def forward_tokens(self, x): for idx, block in enumerate(self.network): x = block(x) B, H, W, C = x.shape x = x.reshape(B, -1, C) return x def forward(self, x): x = self.forward_embeddings(x) # B, H, W, C -> B, N, C x = self.forward_tokens(x) x = self.norm(x) return self.head(x.mean(1)) default_cfgs = { 'DynaLike_S': _cfg(crop_pct=0.9), 'DynaLike_M': _cfg(crop_pct=0.9), 'DynaLike_L': _cfg(crop_pct=0.875), } @register_model def dynalike_s(pretrained=False, **kwargs): layers = [4, 3, 8, 3] transitions = [True, False, False, False] resolutions = [32, 16, 16, 16] num_heads = [8, 16, 16, 16] mlp_ratios = [3, 3, 3, 3] embed_dims = [192, 384, 384, 384] reduced_dims = [2, 2, 2, 2] model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions, resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios, mlp_fn=DynaMixerBlock, **kwargs) model.default_cfg = default_cfgs['DynaLike_S'] return model @register_model def dynalike_m(pretrained=False, **kwargs): layers = [4, 3, 14, 3] transitions = [False, True, False, False] resolutions = [32, 32, 16, 16] num_heads = [8, 8, 16, 16] mlp_ratios = [3, 3, 3, 3] embed_dims = [256, 256, 512, 512] reduced_dims = [2, 2, 2, 2] model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions, resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios, mlp_fn=DynaMixerBlock, **kwargs) model.default_cfg = default_cfgs['DynaLike_M'] return model @register_model def dynalike_l(pretrained=False, **kwargs): layers = [8, 8, 16, 4] transitions = [True, False, False, False] resolutions = [32, 16, 16, 16] num_heads = [8, 16, 16, 16] mlp_ratios = [3, 3, 3, 3] embed_dims = [256, 512, 512, 512] reduced_dims = [4, 4, 4, 4] model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions, resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios, mlp_fn=DynaMixerBlock, **kwargs) model.default_cfg = default_cfgs['DynaLike_L'] return model