Spaces:
Runtime error
Runtime error
darshan8950
commited on
Upload 3 files
Browse files- borrower_data.csv +0 -0
- requirements.txt +5 -0
- train.py +51 -0
borrower_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
ctransformers
|
3 |
+
sentence-transformers
|
4 |
+
faiss-cpu
|
5 |
+
streamlit== 1.22.0
|
train.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from langchain.document_loaders.csv_loader import CSVLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain.llms import CTransformers
|
7 |
+
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
import streamlit as st
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
def main():
|
12 |
+
st.set_page_config(page_title="π¨βπ» Talk with your CSV")
|
13 |
+
st.title("π¨βπ» Talk with your CSV")
|
14 |
+
st.write("Please insert your link.")
|
15 |
+
uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
|
16 |
+
|
17 |
+
query = st.text_input("Send a Message")
|
18 |
+
if st.button("Submit Query", type="primary"):
|
19 |
+
DB_FAISS_PATH = "vectorstore/db_faiss"
|
20 |
+
|
21 |
+
if uploaded_file :
|
22 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
23 |
+
tmp_file.write(uploaded_file.getvalue())
|
24 |
+
tmp_file_path = tmp_file.name
|
25 |
+
|
26 |
+
loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
|
27 |
+
'delimiter': ','})
|
28 |
+
data = loader.load()
|
29 |
+
st.write(data)
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
|
31 |
+
text_chunks = text_splitter.split_documents(data)
|
32 |
+
|
33 |
+
embeddings = HuggingFaceEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2')
|
34 |
+
|
35 |
+
docsearch = FAISS.from_documents(text_chunks, embeddings)
|
36 |
+
|
37 |
+
docsearch.save_local(DB_FAISS_PATH)
|
38 |
+
|
39 |
+
llm = CTransformers(model="models/llama-2-7b-chat.ggmlv3.q4_0.bin",
|
40 |
+
model_type="llama",
|
41 |
+
max_new_tokens=512,
|
42 |
+
temperature=0.1)
|
43 |
+
|
44 |
+
qa = ConversationalRetrievalChain.from_llm(llm, retriever=docsearch.as_retriever())
|
45 |
+
|
46 |
+
result = qa(query)
|
47 |
+
st.write(result)
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
main()
|
51 |
+
|