Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import spaces | |
zero = torch.Tensor([0]).cuda() | |
# Load model and tokenizer only once, outside the function | |
model_name = "deepapaikar/Katzbot_Llama_7b_QA_10eps" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto') | |
def generate_text(input_text): | |
"""Generates text using the LlamaKatz-3x8B model. | |
Args: | |
input_text (str): The input text as a prompt. | |
Returns: | |
str: The generated text. | |
""" | |
inputs = tokenizer(input_text, return_tensors="pt").to(zero.device) | |
outputs = model.generate(**inputs) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=5, label="Enter your text here:"), | |
outputs=gr.Textbox(lines=5, label="Generated Text:"), | |
title="KatzLLaMA", | |
description="Enter some text and this app will generate more text based on it using the KatzLLaMA." | |
) | |
if __name__ == "__main__": | |
iface.launch(debug=True) |