classify-rooms / app.py
Vincent Claes
add examples
717c8fd
import torch
import gradio as gr
from transformers import AutoProcessor, AutoModel
from pathlib import Path
import numpy as np
from decord import VideoReader
import imageio
FRAME_SAMPLING_RATE = 4
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
model = AutoModel.from_pretrained(DEFAULT_MODEL)
ROOM_TYPES = (
"bathroom,sauna,living room, bedroom,kitchen,toilet,hallway,dressing,attic,basement,home office,garage"
)
examples = [
[
"movies/bathroom.mp4",
ROOM_TYPES,
],
[
"movies/bedroom.mp4",
ROOM_TYPES,
],
[
"movies/dressing.mp4",
ROOM_TYPES,
],
[
"movies/home-office.mp4",
ROOM_TYPES,
],
[
"movies/kitchen.mp4",
ROOM_TYPES,
],
[
"movies/living-room.mp4",
ROOM_TYPES,
],
[
"movies/toilet.mp4",
ROOM_TYPES,
],
]
def sample_frames_from_video_file(
file_path: str, num_frames: int = 16, frame_sampling_rate=1
):
videoreader = VideoReader(file_path)
videoreader.seek(0)
# sample frames
start_idx = 0
end_idx = num_frames * frame_sampling_rate - 1
indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64)
frames = videoreader.get_batch(indices).asnumpy()
return frames
def get_num_total_frames(file_path: str):
videoreader = VideoReader(file_path)
videoreader.seek(0)
return len(videoreader)
def select_model(model_name):
global processor, model
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def get_frame_sampling_rate(video_path, num_model_input_frames):
# rearrange sampling rate based on video length and model input length
num_total_frames = get_num_total_frames(video_path)
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
frame_sampling_rate = num_total_frames // num_model_input_frames
else:
frame_sampling_rate = FRAME_SAMPLING_RATE
return frame_sampling_rate
def predict(video_path, labels_text):
labels = labels_text.split(",")
num_model_input_frames = model.config.vision_config.num_frames
frame_sampling_rate = get_frame_sampling_rate(video_path, num_model_input_frames)
frames = sample_frames_from_video_file(
video_path, num_model_input_frames, frame_sampling_rate
)
inputs = processor(
text=labels, videos=list(frames), return_tensors="pt", padding=True
)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
label_to_prob = {}
for ind, label in enumerate(labels):
label_to_prob[label] = float(probs[ind])
# return label_to_prob, gif_path
return label_to_prob
app = gr.Blocks()
with app:
gr.Markdown("# **<p align='center'>Classification of Rooms</p>**")
gr.Markdown(
"#### **<p align='center'>Upload a video (mp4) of a room and provide a list of type of rooms the model should select from.</p>**"
)
with gr.Row():
with gr.Column():
video_file = gr.Video(label="Video File:", show_label=True)
local_video_labels_text = gr.Textbox(value=ROOM_TYPES,label="Room Types", show_label=True)
submit_button = gr.Button(value="Predict")
with gr.Column():
predictions = gr.Label(label="Predictions:", show_label=True)
gr.Markdown("**Examples:**")
gr.Examples(
examples,
[video_file, local_video_labels_text],
predictions,
fn=predict,
cache_examples=True,
)
submit_button.click(
predict,
inputs=[video_file, local_video_labels_text],
outputs=predictions,
)
app.launch()