Spaces:
Runtime error
Runtime error
Vincent Claes
commited on
Commit
·
a861406
1
Parent(s):
abf0474
working code
Browse files- Makefile.txt +4 -0
- README.md +4 -0
- app.py +151 -0
- movies/bathroom.mp4 +0 -0
- movies/bedroom.mp4 +0 -0
- movies/dressing.mp4 +0 -0
- movies/home-office.mp4 +0 -0
- movies/kitchen.mp4 +0 -0
- movies/living-room.mp4 +0 -0
- movies/toilet.mp4 +0 -0
- poetry.lock +0 -0
- pyproject.toml +27 -0
- requirements.txt +5 -0
Makefile.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
install:
|
2 |
+
poetry install
|
3 |
+
poetry run pip list --format=freeze > requirements.txt
|
4 |
+
|
README.md
CHANGED
@@ -10,3 +10,7 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
|
14 |
+
# Classify Rooms
|
15 |
+
|
16 |
+
##
|
app.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoProcessor, AutoModel
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
import numpy as np
|
7 |
+
from decord import VideoReader
|
8 |
+
import imageio
|
9 |
+
|
10 |
+
FRAME_SAMPLING_RATE = 4
|
11 |
+
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
|
12 |
+
|
13 |
+
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
|
14 |
+
model = AutoModel.from_pretrained(DEFAULT_MODEL)
|
15 |
+
|
16 |
+
ROOMS = (
|
17 |
+
"bathroom,sauna,living room, bedroom,kitchen,toilet,hallway,dressing,attic,basement"
|
18 |
+
)
|
19 |
+
examples = [
|
20 |
+
[
|
21 |
+
"movies/bathroom.mp4",
|
22 |
+
ROOMS,
|
23 |
+
],
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
def sample_frames_from_video_file(
|
28 |
+
file_path: str, num_frames: int = 16, frame_sampling_rate=1
|
29 |
+
):
|
30 |
+
videoreader = VideoReader(file_path)
|
31 |
+
videoreader.seek(0)
|
32 |
+
|
33 |
+
# sample frames
|
34 |
+
start_idx = 0
|
35 |
+
end_idx = num_frames * frame_sampling_rate - 1
|
36 |
+
indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64)
|
37 |
+
frames = videoreader.get_batch(indices).asnumpy()
|
38 |
+
|
39 |
+
return frames
|
40 |
+
|
41 |
+
|
42 |
+
def get_num_total_frames(file_path: str):
|
43 |
+
videoreader = VideoReader(file_path)
|
44 |
+
videoreader.seek(0)
|
45 |
+
return len(videoreader)
|
46 |
+
|
47 |
+
|
48 |
+
# def convert_frames_to_gif(frames, save_path: str = "frames.gif"):
|
49 |
+
# converted_frames = frames.astype(np.uint8)
|
50 |
+
# Path(save_path).parent.mkdir(parents=True, exist_ok=True)
|
51 |
+
# imageio.mimsave(save_path, converted_frames, fps=8)
|
52 |
+
# return save_path
|
53 |
+
|
54 |
+
|
55 |
+
# def create_gif_from_video_file(
|
56 |
+
# file_path: str,
|
57 |
+
# num_frames: int = 16,
|
58 |
+
# frame_sampling_rate: int = 1,
|
59 |
+
# save_path: str = "frames.gif",
|
60 |
+
# ):
|
61 |
+
# frames = sample_frames_from_video_file(file_path, num_frames, frame_sampling_rate)
|
62 |
+
# return convert_frames_to_gif(frames, save_path)
|
63 |
+
|
64 |
+
|
65 |
+
def select_model(model_name):
|
66 |
+
global processor, model
|
67 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
68 |
+
model = AutoModel.from_pretrained(model_name)
|
69 |
+
|
70 |
+
def get_frame_sampling_rate(video_path, num_model_input_frames):
|
71 |
+
# rearrange sampling rate based on video length and model input length
|
72 |
+
num_total_frames = get_num_total_frames(video_path)
|
73 |
+
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
|
74 |
+
frame_sampling_rate = num_total_frames // num_model_input_frames
|
75 |
+
else:
|
76 |
+
frame_sampling_rate = FRAME_SAMPLING_RATE
|
77 |
+
return frame_sampling_rate
|
78 |
+
|
79 |
+
def predict(video_path, labels_text):
|
80 |
+
labels = labels_text.split(",")
|
81 |
+
num_model_input_frames = model.config.vision_config.num_frames
|
82 |
+
frame_sampling_rate = get_frame_sampling_rate(video_path, num_model_input_frames)
|
83 |
+
frames = sample_frames_from_video_file(
|
84 |
+
video_path, num_model_input_frames, frame_sampling_rate
|
85 |
+
)
|
86 |
+
# gif_path = convert_frames_to_gif(frames, save_path="video.gif")
|
87 |
+
|
88 |
+
inputs = processor(
|
89 |
+
text=labels, videos=list(frames), return_tensors="pt", padding=True
|
90 |
+
)
|
91 |
+
# forward pass
|
92 |
+
with torch.no_grad():
|
93 |
+
outputs = model(**inputs)
|
94 |
+
|
95 |
+
probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
|
96 |
+
label_to_prob = {}
|
97 |
+
for ind, label in enumerate(labels):
|
98 |
+
label_to_prob[label] = float(probs[ind])
|
99 |
+
|
100 |
+
# return label_to_prob, gif_path
|
101 |
+
return label_to_prob
|
102 |
+
|
103 |
+
|
104 |
+
app = gr.Blocks()
|
105 |
+
with app:
|
106 |
+
gr.Markdown(
|
107 |
+
"# **<p align='center'>Classification of Rooms</p>**"
|
108 |
+
)
|
109 |
+
gr.Markdown(
|
110 |
+
"### **<p align='center'>Upload a video of a room and provide a list of type of rooms the model should select from.</p>**"
|
111 |
+
|
112 |
+
)
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column():
|
116 |
+
video_file = gr.Video(label="Video File:", show_label=True)
|
117 |
+
local_video_labels_text = gr.Textbox(
|
118 |
+
label="Labels Text:", show_label=True
|
119 |
+
)
|
120 |
+
submit_button = gr.Button(value="Predict")
|
121 |
+
# with gr.Column():
|
122 |
+
# video_gif = gr.Image(
|
123 |
+
# label="Input Clip",
|
124 |
+
# show_label=True,
|
125 |
+
# )
|
126 |
+
with gr.Column():
|
127 |
+
predictions = gr.Label(label="Predictions:", show_label=True)
|
128 |
+
|
129 |
+
gr.Markdown("**Examples:**")
|
130 |
+
# gr.Examples(
|
131 |
+
# examples,
|
132 |
+
# [video_file,local_video_labels_text],
|
133 |
+
# [predictions, video_gif],
|
134 |
+
# fn=predict,
|
135 |
+
# cache_examples=True,
|
136 |
+
# )
|
137 |
+
|
138 |
+
submit_button.click(
|
139 |
+
predict,
|
140 |
+
inputs=[video_file, local_video_labels_text],
|
141 |
+
# outputs=[predictions, video_gif],
|
142 |
+
outputs=predictions,
|
143 |
+
)
|
144 |
+
# gr.Markdown(
|
145 |
+
# """
|
146 |
+
# \n Created by: Vincent Claes, <a href=\"https://www.meet-drift.ai/\">Drift</a>.
|
147 |
+
# \n Inspired by: <a href=\"https://huggingface.co/spaces/fcakyon/zero-shot-video-classification\">fcakyon</a>.
|
148 |
+
# """
|
149 |
+
# )
|
150 |
+
|
151 |
+
app.launch()
|
movies/bathroom.mp4
ADDED
Binary file (615 kB). View file
|
|
movies/bedroom.mp4
ADDED
Binary file (106 kB). View file
|
|
movies/dressing.mp4
ADDED
Binary file (251 kB). View file
|
|
movies/home-office.mp4
ADDED
Binary file (336 kB). View file
|
|
movies/kitchen.mp4
ADDED
Binary file (317 kB). View file
|
|
movies/living-room.mp4
ADDED
Binary file (376 kB). View file
|
|
movies/toilet.mp4
ADDED
Binary file (215 kB). View file
|
|
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "classify-rooms"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["Vincent Claes <[email protected]>"]
|
6 |
+
readme = "README.md"
|
7 |
+
|
8 |
+
[tool.poetry.dependencies]
|
9 |
+
python = "^3.8"
|
10 |
+
gradio = "^3.12.0"
|
11 |
+
decord = "^0.6.0"
|
12 |
+
torch = "^1.13.1"
|
13 |
+
transformers = "^4.25.1"
|
14 |
+
imageio = "^2.24.0"
|
15 |
+
|
16 |
+
[tool.poetry.group.dev.dependencies]
|
17 |
+
black = "^22.12.0"
|
18 |
+
|
19 |
+
[build-system]
|
20 |
+
requires = ["poetry-core"]
|
21 |
+
build-backend = "poetry.core.masonry.api"
|
22 |
+
#gradio
|
23 |
+
#torch
|
24 |
+
#decord
|
25 |
+
#pytube
|
26 |
+
#imageio
|
27 |
+
#transformers @ git+https://github.com/huggingface/transformers.git@799cea64ac1029d66e9e58f18bc6f47892270723
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
decord
|
4 |
+
imageio
|
5 |
+
transformers @ git+https://github.com/huggingface/transformers.git@799cea64ac1029d66e9e58f18bc6f47892270723
|