File size: 10,820 Bytes
ecb77df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import re
import spacy_streamlit
from spacy_streamlit import visualize_parser
from collections import Counter

import spacy
import streamlit as st

# try:
#     from .scripts.custom_functions import build_mean_max_reducer1, build_mean_max_reducer2, build_mean_max_reducer3
# except ImportError:
#     from pipeline.custom_functions import build_mean_max_reducer1, build_mean_max_reducer2, build_mean_max_reducer3
from spacy.tokens import Doc
from spacy.cli._util import import_code

from utils.visualize import visualize_spans
from utils.utility import preprocess, delete_overlapping_span, cleanup_justify
from resources.text_list import TEXT_LIST
from resources.text_list_BAWE import TEXT_LIST_BAWE
from resources.template_list import TPL_SPAN, TPL_SPAN_SLICE, TPL_SPAN_START
from resources.colors import COLORS_1

import_code("pipeline/custom_functions.py")
st.set_page_config(page_title='Engagement model comparaer', layout="wide")

# spacy.prefer_gpu()

MODEL_LIST =['en_engagement_LSTM', 'en_engagement_LSTM']

# MODEL_LIST = [
#     'en_engagement_three_RoBERTa_base_LSTM384-0.9.2/en_engagement_three_RoBERTa_base_LSTM384/en_engagement_three_RoBERTa_base_LSTM384-0.9.2',
#     'en_engagement_three_RoBERTa_acad3_db-0.9.2/en_engagement_three_RoBERTa_acad3_db/en_engagement_three_RoBERTa_acad3_db-0.9.2',
#     'silver-sweep-34/model-best',
#     'expert-sweep-4/model-best',
#     'confused-sweep-6/model-best',
#     'warm-sweep-20/model-best',
#     "en_engagement_three_RoBERTa_base-1.10.0/en_engagement_three_RoBERTa_base/en_engagement_three_RoBERTa_base-1.10.0",
#     "en_engagement_three_RoBERTa_acad_db-1.10.0/en_engagement_three_RoBERTa_acad_db/en_engagement_three_RoBERTa_acad_db-1.10.0",
#     "en_engagement_para_RoBERTa_acad_db3-0.9.0/en_engagement_para_RoBERTa_acad_db3/en_engagement_para_RoBERTa_acad_db3-0.9.0",
#     "en_engagement_para_RoBERTa_acad_LSTM2-0.9.0/en_engagement_para_RoBERTa_acad_LSTM2/en_engagement_para_RoBERTa_acad_LSTM2-0.9.0",
#     "en_engagement_three_RoBERTa_acad_db3-0.9.1/en_engagement_three_RoBERTa_acad_db3/en_engagement_three_RoBERTa_acad_db3-0.9.1",
#     "en_engagement_three_RoBERTa_acad_LSTM2-0.9.1/en_engagement_three_RoBERTa_acad_LSTM2/en_engagement_three_RoBERTa_acad_LSTM2-0.9.1",
#     "en_engagement_three_RoBERTa_acad_db3-0.9.2/en_engagement_three_RoBERTa_acad_db3/en_engagement_three_RoBERTa_acad_db3-0.9.2",
#     'en_engagement_spl_RoBERTa_acad_db-0.7.4/en_engagement_spl_RoBERTa_acad_db/en_engagement_spl_RoBERTa_acad_db-0.7.4',
#     'en_engagement_spl_RoBERTa_acad_db3-0.9.0/en_engagement_spl_RoBERTa_acad_db3/en_engagement_spl_RoBERTa_acad_db3-0.9.0',
#     'en_engagement_spl_RoBERTa_acad_LSTM-0.7.2/en_engagement_spl_RoBERTa_acad_LSTM/en_engagement_spl_RoBERTa_acad_LSTM-0.7.2',
#     'en_engagement_spl_RoBERTa_acad_512',
#     'en_engagement_spl_RoBERTa_acad',
#     'en_engagement_spl_RoBERTa_exp-0.6.5/en_engagement_spl_RoBERTa_exp/en_engagement_spl_RoBERTa_exp-0.6.5',
#     # 'en_engagement_spl_RoBERTa_acad-0.3.4.1221/en_engagement_spl_RoBERTa_acad/en_engagement_spl_RoBERTa_acad-0.3.4.1221',
#     # 'en_engagement_spl_RoBERTa_acad-0.2.2.1228/en_engagement_spl_RoBERTa_acad/en_engagement_spl_RoBERTa_acad-0.2.2.1228',
#     # 'en_engagement_spl_RoBERTa_acad-0.2.1.1228/en_engagement_spl_RoBERTa_acad/en_engagement_spl_RoBERTa_acad-0.2.1.1228',
#     # 'en_engagement_spl_RoBERTa_acad-0.2.2.1220/en_engagement_spl_RoBERTa_acad/en_engagement_spl_RoBERTa_acad-0.2.2.1220',
#     # 'en_engagement_spl_RoBERTa2-0.2.2.1210/en_engagement_spl_RoBERTa2/en_engagement_spl_RoBERTa2-0.2.2.1210',
#     # 'en_engagement_spl_RoBERTa-0.2.2.1210/en_engagement_spl_RoBERTa/en_engagement_spl_RoBERTa-0.2.2.1210',
#     # 'en_engagement_spl_RoBERTa_acad_max1_do02',
#     # 'en_engagement_spl_RoBERTa2-0.2.2.1210/en_engagement_spl_RoBERTa2/en_engagement_spl_RoBERTa2-0.2.2.1210',
#     # 'en_engagement_spl_RoBERTa_acad-0.2.3.1210/en_engagement_spl_RoBERTa_acad/en_engagement_spl_RoBERTa_acad-0.2.3.1210',
#     # 'en_engagement_spl_RoBERTa_acad_max1_do02',
#     # 'en_engagement_spl_RoBERTa_sqbatch_RAdam-20221202_0.1.5/en_engagement_spl_RoBERTa_sqbatch_RAdam/en_engagement_spl_RoBERTa_sqbatch_RAdam-20221202_0.1.5',
#     # 'en_engagement_spl_RoBERTa_context_flz-20221130_0.1.4/en_engagement_spl_RoBERTa_context_flz/en_engagement_spl_RoBERTa_context_flz-20221130_0.1.4',
#     # 'en_engagement_spl_RoBERTa_cx_max1_do2-20221202_0.1.5/en_engagement_spl_RoBERTa_cx_max1_do2/en_engagement_spl_RoBERTa_cx_max1_do2-20221202_0.1.5',
#     # 'en_engagement_spl_RoBERTa_context_flz-20221125_0.1.4/en_engagement_spl_RoBERTa_context_flz/en_engagement_spl_RoBERTa_context_flz-20221125_0.1.4',
#     # 'en_engagement_RoBERTa_context_flz-20221125_0.1.4/en_engagement_RoBERTa_context_flz/en_engagement_RoBERTa_context_flz-20221125_0.1.4',
#     # 'en_engagement_RoBERTa_context_flz-20221117_0.1.3/en_engagement_RoBERTa_context_flz/en_engagement_RoBERTa_context_flz-20221117_0.1.3',
#     # 'en_engagement_spl_RoBERTa_acad_context_flz-20221117_0.1.3/en_engagement_spl_RoBERTa_acad_context_flz/en_engagement_spl_RoBERTa_acad_context_flz-20221117_0.1.3',
#     # 'en_engagement_RoBERTa_context_flz-Batch2_0.1.1/en_engagement_RoBERTa_context_flz/en_engagement_RoBERTa_context_flz-Batch2_0.1.1',
#     # 'en_engagement_RoBERTa_context_flz-20221113_0.1.3/en_engagement_RoBERTa_context_flz/en_engagement_RoBERTa_context_flz-20221113_0.1.3',
#     # 'en_engagement_RoBERTa_context_flz-20221113_0.1.1/en_engagement_RoBERTa_context_flz/en_engagement_RoBERTa_context_flz-20221113_0.1.1',
#     # 'en_engagement_RoBERTa-0.0.2/en_engagement_RoBERTa/en_engagement_RoBERTa-0.0.2',
#     # 'en_engagement_RoBERTa_combined-Batch2Eng_0.2/en_engagement_RoBERTa_combined/en_engagement_RoBERTa_combined-Batch2Eng_0.2',
#     # 'en_engagement_RoBERTa_acad-0.2.1/en_engagement_RoBERTa_acad/en_engagement_RoBERTa_acad-0.2.1',
#     # # 'en_engagement_BERT-0.0.2/en_engagement_BERT/en_engagement_BERT-0.0.2',
#     # # 'en_engagement_BERT_acad-0.0.2/en_engagement_BERT_acad/en_engagement_BERT_acad-0.0.2',
#     # # 'en_engagement_RoBERTa_acad-0.0.2/en_engagement_RoBERTa_acad/en_engagement_RoBERTa_acad-0.0.2',
#     # 'en_engagement_RoBERTa-0.0.1/en_engagement_RoBERTa/en_engagement_RoBERTa-0.0.1',
#     # # ' en_engagement_RoBERTa_sent-0.0.1_null/en_engagement_RoBERTa_sent/en_engagement_RoBERTa_sent-0.0.1_null',
#     # # 'en_engagement_RoBERTa_combined-0.0.1/en_engagement_RoBERTa_combined/en_engagement_RoBERTa_combined-0.0.1',
#     # 'en_engagement_RoBERTa-ME_AtoE/en_engagement_RoBERTa/en_engagement_RoBERTa-ME_AtoE',
#     # 'en_engagement_RoBERTa-AtoI_0.0.3/en_engagement_RoBERTa/en_engagement_RoBERTa-AtoI_0.0.3',
#     # 'en_engagement_RoBERTa-AtoI_0.0.3/en_engagement_RoBERTa/en_engagement_RoBERTa-AtoI_0.0.2'
# ]

multicol = st.checkbox("Compare two models", value=False, key=None, help=None)

model1 = st.selectbox('Select model option 1', MODEL_LIST, index=0)
model2 = st.selectbox('Select model option 2', MODEL_LIST, index=1)

if '/' in model1:
    model1 = "packages/" + model1

if '/' in model2:
    model2 = "packages/" + model2


@st.cache(allow_output_mutation=True)
def load_model(spacy_model):
    # source = spacy.blank("en")
    nlp = spacy.load(spacy_model) #, vocab=nlp_to_copy.vocab
    nlp.add_pipe('sentencizer')
    return (nlp)

# source = spacy.blank("en")
nlp = load_model(model1)

if multicol:
    nlp2 = load_model(model2)


text = st.selectbox('select sent to debug', TEXT_LIST_BAWE)

input_text = st.text_area("", height=200)

# Dependency parsing
st.header("Text", "text")
if len(input_text.split(" ")) > 1:
    doc = nlp(preprocess(input_text))
    if multicol:
        doc2 = nlp2(preprocess(input_text))
    # st.markdown("> " + input_text)
else:
    doc = nlp(preprocess(text))
    if multicol:
        doc2 = nlp2(preprocess(text))
    # st.markdown("> " + text)

clearjustify = st.checkbox(
    "Clear problematic JUSTIFYING spans", value=True, key=None, help=None)

delete_overlaps = st.checkbox(
    "Delete overlaps", value=True, key=None, help=None)

# combine = st.checkbox(
#     "Combine", value=False, key=None, help=None)

# import copy
# def combine_spangroups(doc1, doc2):
#     # new_doc = Doc.from_docs([doc1, doc2], ensure_whitespace=True)
#     new_doc = copy.deepcopy(doc1)
#     # type()
#     new_doc.spans['sc'].extend(doc2.spans['sc'])

#     return new_doc


# if combine:
#     new_doc = combine_spangroups(doc, doc2)
#     visualize_spans(new_doc,
#                     spans_key="sc",
#                     title='Combined spans:',
#                     displacy_options={
#                         'template': {
#                               "span": TPL_SPAN,
#                             'slice': TPL_SPAN_SLICE,
#                             'start': TPL_SPAN_START,
#                         },
#                         "colors": COLORS_1,
#                     },
#                     simple=False)

if clearjustify:
    cleanup_justify(doc, doc.spans['sc'])

if delete_overlaps:
    delete_overlapping_span(doc.spans['sc'])
    if multicol:
        delete_overlapping_span(doc2.spans['sc'])

if not multicol:
    visualize_spans(doc,
                    spans_key="sc",
                    title='Engagement Span Anotations 1',
                    displacy_options={
                        'template': {
                              "span": TPL_SPAN,
                            'slice': TPL_SPAN_SLICE,
                            'start': TPL_SPAN_START,
                        },
                        "colors": COLORS_1,
                    },
                    simple=False)


else:
    col1, col2 = st.columns(2)

    with col1:
        visualize_spans(doc,
                        spans_key="sc",
                        title='Engagement Span Anotations 1',
                        displacy_options={
                            'template': {
                                "span": TPL_SPAN,
                                'slice': TPL_SPAN_SLICE,
                                'start': TPL_SPAN_START,
                            },
                            "colors": COLORS_1,
                        },
                        simple=False)

    with col2:
        visualize_spans(doc2,
                        spans_key="sc",
                        title='Engagement Span Anotations 2',
                        displacy_options={
                            'template': {
                                "span": TPL_SPAN,
                                'slice': TPL_SPAN_SLICE,
                                'start': TPL_SPAN_START,
                            },
                            "colors": COLORS_1,
                        },
                        simple=False)


dep_options = {"fine_grained": True, "distance": 120}
visualize_parser(doc, displacy_options=dep_options)