Spaces:
Sleeping
Sleeping
Akito-UzukiP
commited on
Commit
·
9429d2d
1
Parent(s):
589a419
first commit
Browse filessh: line 1: wq: command not found
sh: line 1: q: command not found
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +168 -0
- .pre-commit-config.yaml +25 -0
- 1.4.3 +0 -0
- LICENSE +661 -0
- app.py +215 -0
- attentions.py +464 -0
- bert/bert-base-japanese-v3/README.md +53 -0
- bert/bert-base-japanese-v3/config.json +19 -0
- bert/bert-base-japanese-v3/pytorch_model.bin +3 -0
- bert/bert-base-japanese-v3/tokenizer_config.json +10 -0
- bert/bert-base-japanese-v3/vocab.txt +0 -0
- bert/chinese-roberta-wwm-ext-large/.gitattributes +9 -0
- bert/chinese-roberta-wwm-ext-large/.gitignore +1 -0
- bert/chinese-roberta-wwm-ext-large/README.md +57 -0
- bert/chinese-roberta-wwm-ext-large/added_tokens.json +1 -0
- bert/chinese-roberta-wwm-ext-large/config.json +28 -0
- bert/chinese-roberta-wwm-ext-large/special_tokens_map.json +1 -0
- bert/chinese-roberta-wwm-ext-large/tokenizer.json +0 -0
- bert/chinese-roberta-wwm-ext-large/tokenizer_config.json +1 -0
- bert/chinese-roberta-wwm-ext-large/vocab.txt +0 -0
- bert_gen.py +61 -0
- commons.py +160 -0
- configs/config.json +197 -0
- data_utils.py +406 -0
- generation_logs.txt +1267 -0
- losses.py +58 -0
- mel_processing.py +139 -0
- models.py +986 -0
- modules.py +597 -0
- monotonic_align/__init__.py +16 -0
- monotonic_align/core.py +46 -0
- preprocess_text.py +107 -0
- requirements.txt +23 -0
- resample.py +48 -0
- server.py +170 -0
- text/__init__.py +28 -0
- text/chinese.py +198 -0
- text/chinese_bert.py +100 -0
- text/cleaner.py +28 -0
- text/cmudict.rep +0 -0
- text/cmudict_cache.pickle +3 -0
- text/english.py +214 -0
- text/english_bert_mock.py +5 -0
- text/japanese.py +668 -0
- text/japanese_bert.py +87 -0
- text/opencpop-strict.txt +429 -0
- text/symbols.py +187 -0
- text/tone_sandhi.py +769 -0
- train_ms.py +596 -0
- train_ms_acc.py +623 -0
.gitignore
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
.DS_Store
|
163 |
+
/models
|
164 |
+
/logs
|
165 |
+
|
166 |
+
filelists/*
|
167 |
+
!/filelists/esd.list
|
168 |
+
data/*
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.4.0
|
4 |
+
hooks:
|
5 |
+
- id: check-yaml
|
6 |
+
- id: end-of-file-fixer
|
7 |
+
- id: trailing-whitespace
|
8 |
+
|
9 |
+
- repo: https://github.com/astral-sh/ruff-pre-commit
|
10 |
+
rev: v0.0.292
|
11 |
+
hooks:
|
12 |
+
- id: ruff
|
13 |
+
args: [ --fix ]
|
14 |
+
|
15 |
+
- repo: https://github.com/psf/black
|
16 |
+
rev: 23.9.1
|
17 |
+
hooks:
|
18 |
+
- id: black
|
19 |
+
|
20 |
+
- repo: https://github.com/codespell-project/codespell
|
21 |
+
rev: v2.2.6
|
22 |
+
hooks:
|
23 |
+
- id: codespell
|
24 |
+
files: ^.*\.(py|md|rst|yml)$
|
25 |
+
args: [-L=fro]
|
1.4.3
ADDED
Binary file (330 Bytes). View file
|
|
LICENSE
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU Affero General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works, specifically designed to ensure
|
12 |
+
cooperation with the community in the case of network server software.
|
13 |
+
|
14 |
+
The licenses for most software and other practical works are designed
|
15 |
+
to take away your freedom to share and change the works. By contrast,
|
16 |
+
our General Public Licenses are intended to guarantee your freedom to
|
17 |
+
share and change all versions of a program--to make sure it remains free
|
18 |
+
software for all its users.
|
19 |
+
|
20 |
+
When we speak of free software, we are referring to freedom, not
|
21 |
+
price. Our General Public Licenses are designed to make sure that you
|
22 |
+
have the freedom to distribute copies of free software (and charge for
|
23 |
+
them if you wish), that you receive source code or can get it if you
|
24 |
+
want it, that you can change the software or use pieces of it in new
|
25 |
+
free programs, and that you know you can do these things.
|
26 |
+
|
27 |
+
Developers that use our General Public Licenses protect your rights
|
28 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
29 |
+
you this License which gives you legal permission to copy, distribute
|
30 |
+
and/or modify the software.
|
31 |
+
|
32 |
+
A secondary benefit of defending all users' freedom is that
|
33 |
+
improvements made in alternate versions of the program, if they
|
34 |
+
receive widespread use, become available for other developers to
|
35 |
+
incorporate. Many developers of free software are heartened and
|
36 |
+
encouraged by the resulting cooperation. However, in the case of
|
37 |
+
software used on network servers, this result may fail to come about.
|
38 |
+
The GNU General Public License permits making a modified version and
|
39 |
+
letting the public access it on a server without ever releasing its
|
40 |
+
source code to the public.
|
41 |
+
|
42 |
+
The GNU Affero General Public License is designed specifically to
|
43 |
+
ensure that, in such cases, the modified source code becomes available
|
44 |
+
to the community. It requires the operator of a network server to
|
45 |
+
provide the source code of the modified version running there to the
|
46 |
+
users of that server. Therefore, public use of a modified version, on
|
47 |
+
a publicly accessible server, gives the public access to the source
|
48 |
+
code of the modified version.
|
49 |
+
|
50 |
+
An older license, called the Affero General Public License and
|
51 |
+
published by Affero, was designed to accomplish similar goals. This is
|
52 |
+
a different license, not a version of the Affero GPL, but Affero has
|
53 |
+
released a new version of the Affero GPL which permits relicensing under
|
54 |
+
this license.
|
55 |
+
|
56 |
+
The precise terms and conditions for copying, distribution and
|
57 |
+
modification follow.
|
58 |
+
|
59 |
+
TERMS AND CONDITIONS
|
60 |
+
|
61 |
+
0. Definitions.
|
62 |
+
|
63 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
64 |
+
|
65 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
66 |
+
works, such as semiconductor masks.
|
67 |
+
|
68 |
+
"The Program" refers to any copyrightable work licensed under this
|
69 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
70 |
+
"recipients" may be individuals or organizations.
|
71 |
+
|
72 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
73 |
+
in a fashion requiring copyright permission, other than the making of an
|
74 |
+
exact copy. The resulting work is called a "modified version" of the
|
75 |
+
earlier work or a work "based on" the earlier work.
|
76 |
+
|
77 |
+
A "covered work" means either the unmodified Program or a work based
|
78 |
+
on the Program.
|
79 |
+
|
80 |
+
To "propagate" a work means to do anything with it that, without
|
81 |
+
permission, would make you directly or secondarily liable for
|
82 |
+
infringement under applicable copyright law, except executing it on a
|
83 |
+
computer or modifying a private copy. Propagation includes copying,
|
84 |
+
distribution (with or without modification), making available to the
|
85 |
+
public, and in some countries other activities as well.
|
86 |
+
|
87 |
+
To "convey" a work means any kind of propagation that enables other
|
88 |
+
parties to make or receive copies. Mere interaction with a user through
|
89 |
+
a computer network, with no transfer of a copy, is not conveying.
|
90 |
+
|
91 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
92 |
+
to the extent that it includes a convenient and prominently visible
|
93 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
94 |
+
tells the user that there is no warranty for the work (except to the
|
95 |
+
extent that warranties are provided), that licensees may convey the
|
96 |
+
work under this License, and how to view a copy of this License. If
|
97 |
+
the interface presents a list of user commands or options, such as a
|
98 |
+
menu, a prominent item in the list meets this criterion.
|
99 |
+
|
100 |
+
1. Source Code.
|
101 |
+
|
102 |
+
The "source code" for a work means the preferred form of the work
|
103 |
+
for making modifications to it. "Object code" means any non-source
|
104 |
+
form of a work.
|
105 |
+
|
106 |
+
A "Standard Interface" means an interface that either is an official
|
107 |
+
standard defined by a recognized standards body, or, in the case of
|
108 |
+
interfaces specified for a particular programming language, one that
|
109 |
+
is widely used among developers working in that language.
|
110 |
+
|
111 |
+
The "System Libraries" of an executable work include anything, other
|
112 |
+
than the work as a whole, that (a) is included in the normal form of
|
113 |
+
packaging a Major Component, but which is not part of that Major
|
114 |
+
Component, and (b) serves only to enable use of the work with that
|
115 |
+
Major Component, or to implement a Standard Interface for which an
|
116 |
+
implementation is available to the public in source code form. A
|
117 |
+
"Major Component", in this context, means a major essential component
|
118 |
+
(kernel, window system, and so on) of the specific operating system
|
119 |
+
(if any) on which the executable work runs, or a compiler used to
|
120 |
+
produce the work, or an object code interpreter used to run it.
|
121 |
+
|
122 |
+
The "Corresponding Source" for a work in object code form means all
|
123 |
+
the source code needed to generate, install, and (for an executable
|
124 |
+
work) run the object code and to modify the work, including scripts to
|
125 |
+
control those activities. However, it does not include the work's
|
126 |
+
System Libraries, or general-purpose tools or generally available free
|
127 |
+
programs which are used unmodified in performing those activities but
|
128 |
+
which are not part of the work. For example, Corresponding Source
|
129 |
+
includes interface definition files associated with source files for
|
130 |
+
the work, and the source code for shared libraries and dynamically
|
131 |
+
linked subprograms that the work is specifically designed to require,
|
132 |
+
such as by intimate data communication or control flow between those
|
133 |
+
subprograms and other parts of the work.
|
134 |
+
|
135 |
+
The Corresponding Source need not include anything that users
|
136 |
+
can regenerate automatically from other parts of the Corresponding
|
137 |
+
Source.
|
138 |
+
|
139 |
+
The Corresponding Source for a work in source code form is that
|
140 |
+
same work.
|
141 |
+
|
142 |
+
2. Basic Permissions.
|
143 |
+
|
144 |
+
All rights granted under this License are granted for the term of
|
145 |
+
copyright on the Program, and are irrevocable provided the stated
|
146 |
+
conditions are met. This License explicitly affirms your unlimited
|
147 |
+
permission to run the unmodified Program. The output from running a
|
148 |
+
covered work is covered by this License only if the output, given its
|
149 |
+
content, constitutes a covered work. This License acknowledges your
|
150 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
151 |
+
|
152 |
+
You may make, run and propagate covered works that you do not
|
153 |
+
convey, without conditions so long as your license otherwise remains
|
154 |
+
in force. You may convey covered works to others for the sole purpose
|
155 |
+
of having them make modifications exclusively for you, or provide you
|
156 |
+
with facilities for running those works, provided that you comply with
|
157 |
+
the terms of this License in conveying all material for which you do
|
158 |
+
not control copyright. Those thus making or running the covered works
|
159 |
+
for you must do so exclusively on your behalf, under your direction
|
160 |
+
and control, on terms that prohibit them from making any copies of
|
161 |
+
your copyrighted material outside their relationship with you.
|
162 |
+
|
163 |
+
Conveying under any other circumstances is permitted solely under
|
164 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
165 |
+
makes it unnecessary.
|
166 |
+
|
167 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
168 |
+
|
169 |
+
No covered work shall be deemed part of an effective technological
|
170 |
+
measure under any applicable law fulfilling obligations under article
|
171 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
172 |
+
similar laws prohibiting or restricting circumvention of such
|
173 |
+
measures.
|
174 |
+
|
175 |
+
When you convey a covered work, you waive any legal power to forbid
|
176 |
+
circumvention of technological measures to the extent such circumvention
|
177 |
+
is effected by exercising rights under this License with respect to
|
178 |
+
the covered work, and you disclaim any intention to limit operation or
|
179 |
+
modification of the work as a means of enforcing, against the work's
|
180 |
+
users, your or third parties' legal rights to forbid circumvention of
|
181 |
+
technological measures.
|
182 |
+
|
183 |
+
4. Conveying Verbatim Copies.
|
184 |
+
|
185 |
+
You may convey verbatim copies of the Program's source code as you
|
186 |
+
receive it, in any medium, provided that you conspicuously and
|
187 |
+
appropriately publish on each copy an appropriate copyright notice;
|
188 |
+
keep intact all notices stating that this License and any
|
189 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
190 |
+
keep intact all notices of the absence of any warranty; and give all
|
191 |
+
recipients a copy of this License along with the Program.
|
192 |
+
|
193 |
+
You may charge any price or no price for each copy that you convey,
|
194 |
+
and you may offer support or warranty protection for a fee.
|
195 |
+
|
196 |
+
5. Conveying Modified Source Versions.
|
197 |
+
|
198 |
+
You may convey a work based on the Program, or the modifications to
|
199 |
+
produce it from the Program, in the form of source code under the
|
200 |
+
terms of section 4, provided that you also meet all of these conditions:
|
201 |
+
|
202 |
+
a) The work must carry prominent notices stating that you modified
|
203 |
+
it, and giving a relevant date.
|
204 |
+
|
205 |
+
b) The work must carry prominent notices stating that it is
|
206 |
+
released under this License and any conditions added under section
|
207 |
+
7. This requirement modifies the requirement in section 4 to
|
208 |
+
"keep intact all notices".
|
209 |
+
|
210 |
+
c) You must license the entire work, as a whole, under this
|
211 |
+
License to anyone who comes into possession of a copy. This
|
212 |
+
License will therefore apply, along with any applicable section 7
|
213 |
+
additional terms, to the whole of the work, and all its parts,
|
214 |
+
regardless of how they are packaged. This License gives no
|
215 |
+
permission to license the work in any other way, but it does not
|
216 |
+
invalidate such permission if you have separately received it.
|
217 |
+
|
218 |
+
d) If the work has interactive user interfaces, each must display
|
219 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
220 |
+
interfaces that do not display Appropriate Legal Notices, your
|
221 |
+
work need not make them do so.
|
222 |
+
|
223 |
+
A compilation of a covered work with other separate and independent
|
224 |
+
works, which are not by their nature extensions of the covered work,
|
225 |
+
and which are not combined with it such as to form a larger program,
|
226 |
+
in or on a volume of a storage or distribution medium, is called an
|
227 |
+
"aggregate" if the compilation and its resulting copyright are not
|
228 |
+
used to limit the access or legal rights of the compilation's users
|
229 |
+
beyond what the individual works permit. Inclusion of a covered work
|
230 |
+
in an aggregate does not cause this License to apply to the other
|
231 |
+
parts of the aggregate.
|
232 |
+
|
233 |
+
6. Conveying Non-Source Forms.
|
234 |
+
|
235 |
+
You may convey a covered work in object code form under the terms
|
236 |
+
of sections 4 and 5, provided that you also convey the
|
237 |
+
machine-readable Corresponding Source under the terms of this License,
|
238 |
+
in one of these ways:
|
239 |
+
|
240 |
+
a) Convey the object code in, or embodied in, a physical product
|
241 |
+
(including a physical distribution medium), accompanied by the
|
242 |
+
Corresponding Source fixed on a durable physical medium
|
243 |
+
customarily used for software interchange.
|
244 |
+
|
245 |
+
b) Convey the object code in, or embodied in, a physical product
|
246 |
+
(including a physical distribution medium), accompanied by a
|
247 |
+
written offer, valid for at least three years and valid for as
|
248 |
+
long as you offer spare parts or customer support for that product
|
249 |
+
model, to give anyone who possesses the object code either (1) a
|
250 |
+
copy of the Corresponding Source for all the software in the
|
251 |
+
product that is covered by this License, on a durable physical
|
252 |
+
medium customarily used for software interchange, for a price no
|
253 |
+
more than your reasonable cost of physically performing this
|
254 |
+
conveying of source, or (2) access to copy the
|
255 |
+
Corresponding Source from a network server at no charge.
|
256 |
+
|
257 |
+
c) Convey individual copies of the object code with a copy of the
|
258 |
+
written offer to provide the Corresponding Source. This
|
259 |
+
alternative is allowed only occasionally and noncommercially, and
|
260 |
+
only if you received the object code with such an offer, in accord
|
261 |
+
with subsection 6b.
|
262 |
+
|
263 |
+
d) Convey the object code by offering access from a designated
|
264 |
+
place (gratis or for a charge), and offer equivalent access to the
|
265 |
+
Corresponding Source in the same way through the same place at no
|
266 |
+
further charge. You need not require recipients to copy the
|
267 |
+
Corresponding Source along with the object code. If the place to
|
268 |
+
copy the object code is a network server, the Corresponding Source
|
269 |
+
may be on a different server (operated by you or a third party)
|
270 |
+
that supports equivalent copying facilities, provided you maintain
|
271 |
+
clear directions next to the object code saying where to find the
|
272 |
+
Corresponding Source. Regardless of what server hosts the
|
273 |
+
Corresponding Source, you remain obligated to ensure that it is
|
274 |
+
available for as long as needed to satisfy these requirements.
|
275 |
+
|
276 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
277 |
+
you inform other peers where the object code and Corresponding
|
278 |
+
Source of the work are being offered to the general public at no
|
279 |
+
charge under subsection 6d.
|
280 |
+
|
281 |
+
A separable portion of the object code, whose source code is excluded
|
282 |
+
from the Corresponding Source as a System Library, need not be
|
283 |
+
included in conveying the object code work.
|
284 |
+
|
285 |
+
A "User Product" is either (1) a "consumer product", which means any
|
286 |
+
tangible personal property which is normally used for personal, family,
|
287 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
288 |
+
into a dwelling. In determining whether a product is a consumer product,
|
289 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
290 |
+
product received by a particular user, "normally used" refers to a
|
291 |
+
typical or common use of that class of product, regardless of the status
|
292 |
+
of the particular user or of the way in which the particular user
|
293 |
+
actually uses, or expects or is expected to use, the product. A product
|
294 |
+
is a consumer product regardless of whether the product has substantial
|
295 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
296 |
+
the only significant mode of use of the product.
|
297 |
+
|
298 |
+
"Installation Information" for a User Product means any methods,
|
299 |
+
procedures, authorization keys, or other information required to install
|
300 |
+
and execute modified versions of a covered work in that User Product from
|
301 |
+
a modified version of its Corresponding Source. The information must
|
302 |
+
suffice to ensure that the continued functioning of the modified object
|
303 |
+
code is in no case prevented or interfered with solely because
|
304 |
+
modification has been made.
|
305 |
+
|
306 |
+
If you convey an object code work under this section in, or with, or
|
307 |
+
specifically for use in, a User Product, and the conveying occurs as
|
308 |
+
part of a transaction in which the right of possession and use of the
|
309 |
+
User Product is transferred to the recipient in perpetuity or for a
|
310 |
+
fixed term (regardless of how the transaction is characterized), the
|
311 |
+
Corresponding Source conveyed under this section must be accompanied
|
312 |
+
by the Installation Information. But this requirement does not apply
|
313 |
+
if neither you nor any third party retains the ability to install
|
314 |
+
modified object code on the User Product (for example, the work has
|
315 |
+
been installed in ROM).
|
316 |
+
|
317 |
+
The requirement to provide Installation Information does not include a
|
318 |
+
requirement to continue to provide support service, warranty, or updates
|
319 |
+
for a work that has been modified or installed by the recipient, or for
|
320 |
+
the User Product in which it has been modified or installed. Access to a
|
321 |
+
network may be denied when the modification itself materially and
|
322 |
+
adversely affects the operation of the network or violates the rules and
|
323 |
+
protocols for communication across the network.
|
324 |
+
|
325 |
+
Corresponding Source conveyed, and Installation Information provided,
|
326 |
+
in accord with this section must be in a format that is publicly
|
327 |
+
documented (and with an implementation available to the public in
|
328 |
+
source code form), and must require no special password or key for
|
329 |
+
unpacking, reading or copying.
|
330 |
+
|
331 |
+
7. Additional Terms.
|
332 |
+
|
333 |
+
"Additional permissions" are terms that supplement the terms of this
|
334 |
+
License by making exceptions from one or more of its conditions.
|
335 |
+
Additional permissions that are applicable to the entire Program shall
|
336 |
+
be treated as though they were included in this License, to the extent
|
337 |
+
that they are valid under applicable law. If additional permissions
|
338 |
+
apply only to part of the Program, that part may be used separately
|
339 |
+
under those permissions, but the entire Program remains governed by
|
340 |
+
this License without regard to the additional permissions.
|
341 |
+
|
342 |
+
When you convey a copy of a covered work, you may at your option
|
343 |
+
remove any additional permissions from that copy, or from any part of
|
344 |
+
it. (Additional permissions may be written to require their own
|
345 |
+
removal in certain cases when you modify the work.) You may place
|
346 |
+
additional permissions on material, added by you to a covered work,
|
347 |
+
for which you have or can give appropriate copyright permission.
|
348 |
+
|
349 |
+
Notwithstanding any other provision of this License, for material you
|
350 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
351 |
+
that material) supplement the terms of this License with terms:
|
352 |
+
|
353 |
+
a) Disclaiming warranty or limiting liability differently from the
|
354 |
+
terms of sections 15 and 16 of this License; or
|
355 |
+
|
356 |
+
b) Requiring preservation of specified reasonable legal notices or
|
357 |
+
author attributions in that material or in the Appropriate Legal
|
358 |
+
Notices displayed by works containing it; or
|
359 |
+
|
360 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
361 |
+
requiring that modified versions of such material be marked in
|
362 |
+
reasonable ways as different from the original version; or
|
363 |
+
|
364 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
365 |
+
authors of the material; or
|
366 |
+
|
367 |
+
e) Declining to grant rights under trademark law for use of some
|
368 |
+
trade names, trademarks, or service marks; or
|
369 |
+
|
370 |
+
f) Requiring indemnification of licensors and authors of that
|
371 |
+
material by anyone who conveys the material (or modified versions of
|
372 |
+
it) with contractual assumptions of liability to the recipient, for
|
373 |
+
any liability that these contractual assumptions directly impose on
|
374 |
+
those licensors and authors.
|
375 |
+
|
376 |
+
All other non-permissive additional terms are considered "further
|
377 |
+
restrictions" within the meaning of section 10. If the Program as you
|
378 |
+
received it, or any part of it, contains a notice stating that it is
|
379 |
+
governed by this License along with a term that is a further
|
380 |
+
restriction, you may remove that term. If a license document contains
|
381 |
+
a further restriction but permits relicensing or conveying under this
|
382 |
+
License, you may add to a covered work material governed by the terms
|
383 |
+
of that license document, provided that the further restriction does
|
384 |
+
not survive such relicensing or conveying.
|
385 |
+
|
386 |
+
If you add terms to a covered work in accord with this section, you
|
387 |
+
must place, in the relevant source files, a statement of the
|
388 |
+
additional terms that apply to those files, or a notice indicating
|
389 |
+
where to find the applicable terms.
|
390 |
+
|
391 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
392 |
+
form of a separately written license, or stated as exceptions;
|
393 |
+
the above requirements apply either way.
|
394 |
+
|
395 |
+
8. Termination.
|
396 |
+
|
397 |
+
You may not propagate or modify a covered work except as expressly
|
398 |
+
provided under this License. Any attempt otherwise to propagate or
|
399 |
+
modify it is void, and will automatically terminate your rights under
|
400 |
+
this License (including any patent licenses granted under the third
|
401 |
+
paragraph of section 11).
|
402 |
+
|
403 |
+
However, if you cease all violation of this License, then your
|
404 |
+
license from a particular copyright holder is reinstated (a)
|
405 |
+
provisionally, unless and until the copyright holder explicitly and
|
406 |
+
finally terminates your license, and (b) permanently, if the copyright
|
407 |
+
holder fails to notify you of the violation by some reasonable means
|
408 |
+
prior to 60 days after the cessation.
|
409 |
+
|
410 |
+
Moreover, your license from a particular copyright holder is
|
411 |
+
reinstated permanently if the copyright holder notifies you of the
|
412 |
+
violation by some reasonable means, this is the first time you have
|
413 |
+
received notice of violation of this License (for any work) from that
|
414 |
+
copyright holder, and you cure the violation prior to 30 days after
|
415 |
+
your receipt of the notice.
|
416 |
+
|
417 |
+
Termination of your rights under this section does not terminate the
|
418 |
+
licenses of parties who have received copies or rights from you under
|
419 |
+
this License. If your rights have been terminated and not permanently
|
420 |
+
reinstated, you do not qualify to receive new licenses for the same
|
421 |
+
material under section 10.
|
422 |
+
|
423 |
+
9. Acceptance Not Required for Having Copies.
|
424 |
+
|
425 |
+
You are not required to accept this License in order to receive or
|
426 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
427 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
428 |
+
to receive a copy likewise does not require acceptance. However,
|
429 |
+
nothing other than this License grants you permission to propagate or
|
430 |
+
modify any covered work. These actions infringe copyright if you do
|
431 |
+
not accept this License. Therefore, by modifying or propagating a
|
432 |
+
covered work, you indicate your acceptance of this License to do so.
|
433 |
+
|
434 |
+
10. Automatic Licensing of Downstream Recipients.
|
435 |
+
|
436 |
+
Each time you convey a covered work, the recipient automatically
|
437 |
+
receives a license from the original licensors, to run, modify and
|
438 |
+
propagate that work, subject to this License. You are not responsible
|
439 |
+
for enforcing compliance by third parties with this License.
|
440 |
+
|
441 |
+
An "entity transaction" is a transaction transferring control of an
|
442 |
+
organization, or substantially all assets of one, or subdividing an
|
443 |
+
organization, or merging organizations. If propagation of a covered
|
444 |
+
work results from an entity transaction, each party to that
|
445 |
+
transaction who receives a copy of the work also receives whatever
|
446 |
+
licenses to the work the party's predecessor in interest had or could
|
447 |
+
give under the previous paragraph, plus a right to possession of the
|
448 |
+
Corresponding Source of the work from the predecessor in interest, if
|
449 |
+
the predecessor has it or can get it with reasonable efforts.
|
450 |
+
|
451 |
+
You may not impose any further restrictions on the exercise of the
|
452 |
+
rights granted or affirmed under this License. For example, you may
|
453 |
+
not impose a license fee, royalty, or other charge for exercise of
|
454 |
+
rights granted under this License, and you may not initiate litigation
|
455 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
456 |
+
any patent claim is infringed by making, using, selling, offering for
|
457 |
+
sale, or importing the Program or any portion of it.
|
458 |
+
|
459 |
+
11. Patents.
|
460 |
+
|
461 |
+
A "contributor" is a copyright holder who authorizes use under this
|
462 |
+
License of the Program or a work on which the Program is based. The
|
463 |
+
work thus licensed is called the contributor's "contributor version".
|
464 |
+
|
465 |
+
A contributor's "essential patent claims" are all patent claims
|
466 |
+
owned or controlled by the contributor, whether already acquired or
|
467 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
468 |
+
by this License, of making, using, or selling its contributor version,
|
469 |
+
but do not include claims that would be infringed only as a
|
470 |
+
consequence of further modification of the contributor version. For
|
471 |
+
purposes of this definition, "control" includes the right to grant
|
472 |
+
patent sublicenses in a manner consistent with the requirements of
|
473 |
+
this License.
|
474 |
+
|
475 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
476 |
+
patent license under the contributor's essential patent claims, to
|
477 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
478 |
+
propagate the contents of its contributor version.
|
479 |
+
|
480 |
+
In the following three paragraphs, a "patent license" is any express
|
481 |
+
agreement or commitment, however denominated, not to enforce a patent
|
482 |
+
(such as an express permission to practice a patent or covenant not to
|
483 |
+
sue for patent infringement). To "grant" such a patent license to a
|
484 |
+
party means to make such an agreement or commitment not to enforce a
|
485 |
+
patent against the party.
|
486 |
+
|
487 |
+
If you convey a covered work, knowingly relying on a patent license,
|
488 |
+
and the Corresponding Source of the work is not available for anyone
|
489 |
+
to copy, free of charge and under the terms of this License, through a
|
490 |
+
publicly available network server or other readily accessible means,
|
491 |
+
then you must either (1) cause the Corresponding Source to be so
|
492 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
493 |
+
patent license for this particular work, or (3) arrange, in a manner
|
494 |
+
consistent with the requirements of this License, to extend the patent
|
495 |
+
license to downstream recipients. "Knowingly relying" means you have
|
496 |
+
actual knowledge that, but for the patent license, your conveying the
|
497 |
+
covered work in a country, or your recipient's use of the covered work
|
498 |
+
in a country, would infringe one or more identifiable patents in that
|
499 |
+
country that you have reason to believe are valid.
|
500 |
+
|
501 |
+
If, pursuant to or in connection with a single transaction or
|
502 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
503 |
+
covered work, and grant a patent license to some of the parties
|
504 |
+
receiving the covered work authorizing them to use, propagate, modify
|
505 |
+
or convey a specific copy of the covered work, then the patent license
|
506 |
+
you grant is automatically extended to all recipients of the covered
|
507 |
+
work and works based on it.
|
508 |
+
|
509 |
+
A patent license is "discriminatory" if it does not include within
|
510 |
+
the scope of its coverage, prohibits the exercise of, or is
|
511 |
+
conditioned on the non-exercise of one or more of the rights that are
|
512 |
+
specifically granted under this License. You may not convey a covered
|
513 |
+
work if you are a party to an arrangement with a third party that is
|
514 |
+
in the business of distributing software, under which you make payment
|
515 |
+
to the third party based on the extent of your activity of conveying
|
516 |
+
the work, and under which the third party grants, to any of the
|
517 |
+
parties who would receive the covered work from you, a discriminatory
|
518 |
+
patent license (a) in connection with copies of the covered work
|
519 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
520 |
+
for and in connection with specific products or compilations that
|
521 |
+
contain the covered work, unless you entered into that arrangement,
|
522 |
+
or that patent license was granted, prior to 28 March 2007.
|
523 |
+
|
524 |
+
Nothing in this License shall be construed as excluding or limiting
|
525 |
+
any implied license or other defenses to infringement that may
|
526 |
+
otherwise be available to you under applicable patent law.
|
527 |
+
|
528 |
+
12. No Surrender of Others' Freedom.
|
529 |
+
|
530 |
+
If conditions are imposed on you (whether by court order, agreement or
|
531 |
+
otherwise) that contradict the conditions of this License, they do not
|
532 |
+
excuse you from the conditions of this License. If you cannot convey a
|
533 |
+
covered work so as to satisfy simultaneously your obligations under this
|
534 |
+
License and any other pertinent obligations, then as a consequence you may
|
535 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
536 |
+
to collect a royalty for further conveying from those to whom you convey
|
537 |
+
the Program, the only way you could satisfy both those terms and this
|
538 |
+
License would be to refrain entirely from conveying the Program.
|
539 |
+
|
540 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
541 |
+
|
542 |
+
Notwithstanding any other provision of this License, if you modify the
|
543 |
+
Program, your modified version must prominently offer all users
|
544 |
+
interacting with it remotely through a computer network (if your version
|
545 |
+
supports such interaction) an opportunity to receive the Corresponding
|
546 |
+
Source of your version by providing access to the Corresponding Source
|
547 |
+
from a network server at no charge, through some standard or customary
|
548 |
+
means of facilitating copying of software. This Corresponding Source
|
549 |
+
shall include the Corresponding Source for any work covered by version 3
|
550 |
+
of the GNU General Public License that is incorporated pursuant to the
|
551 |
+
following paragraph.
|
552 |
+
|
553 |
+
Notwithstanding any other provision of this License, you have
|
554 |
+
permission to link or combine any covered work with a work licensed
|
555 |
+
under version 3 of the GNU General Public License into a single
|
556 |
+
combined work, and to convey the resulting work. The terms of this
|
557 |
+
License will continue to apply to the part which is the covered work,
|
558 |
+
but the work with which it is combined will remain governed by version
|
559 |
+
3 of the GNU General Public License.
|
560 |
+
|
561 |
+
14. Revised Versions of this License.
|
562 |
+
|
563 |
+
The Free Software Foundation may publish revised and/or new versions of
|
564 |
+
the GNU Affero General Public License from time to time. Such new versions
|
565 |
+
will be similar in spirit to the present version, but may differ in detail to
|
566 |
+
address new problems or concerns.
|
567 |
+
|
568 |
+
Each version is given a distinguishing version number. If the
|
569 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
570 |
+
Public License "or any later version" applies to it, you have the
|
571 |
+
option of following the terms and conditions either of that numbered
|
572 |
+
version or of any later version published by the Free Software
|
573 |
+
Foundation. If the Program does not specify a version number of the
|
574 |
+
GNU Affero General Public License, you may choose any version ever published
|
575 |
+
by the Free Software Foundation.
|
576 |
+
|
577 |
+
If the Program specifies that a proxy can decide which future
|
578 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
579 |
+
public statement of acceptance of a version permanently authorizes you
|
580 |
+
to choose that version for the Program.
|
581 |
+
|
582 |
+
Later license versions may give you additional or different
|
583 |
+
permissions. However, no additional obligations are imposed on any
|
584 |
+
author or copyright holder as a result of your choosing to follow a
|
585 |
+
later version.
|
586 |
+
|
587 |
+
15. Disclaimer of Warranty.
|
588 |
+
|
589 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
590 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
591 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
592 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
593 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
594 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
595 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
596 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
597 |
+
|
598 |
+
16. Limitation of Liability.
|
599 |
+
|
600 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
601 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
602 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
603 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
604 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
605 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
606 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
607 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
608 |
+
SUCH DAMAGES.
|
609 |
+
|
610 |
+
17. Interpretation of Sections 15 and 16.
|
611 |
+
|
612 |
+
If the disclaimer of warranty and limitation of liability provided
|
613 |
+
above cannot be given local legal effect according to their terms,
|
614 |
+
reviewing courts shall apply local law that most closely approximates
|
615 |
+
an absolute waiver of all civil liability in connection with the
|
616 |
+
Program, unless a warranty or assumption of liability accompanies a
|
617 |
+
copy of the Program in return for a fee.
|
618 |
+
|
619 |
+
END OF TERMS AND CONDITIONS
|
620 |
+
|
621 |
+
How to Apply These Terms to Your New Programs
|
622 |
+
|
623 |
+
If you develop a new program, and you want it to be of the greatest
|
624 |
+
possible use to the public, the best way to achieve this is to make it
|
625 |
+
free software which everyone can redistribute and change under these terms.
|
626 |
+
|
627 |
+
To do so, attach the following notices to the program. It is safest
|
628 |
+
to attach them to the start of each source file to most effectively
|
629 |
+
state the exclusion of warranty; and each file should have at least
|
630 |
+
the "copyright" line and a pointer to where the full notice is found.
|
631 |
+
|
632 |
+
<one line to give the program's name and a brief idea of what it does.>
|
633 |
+
Copyright (C) <year> <name of author>
|
634 |
+
|
635 |
+
This program is free software: you can redistribute it and/or modify
|
636 |
+
it under the terms of the GNU Affero General Public License as published
|
637 |
+
by the Free Software Foundation, either version 3 of the License, or
|
638 |
+
(at your option) any later version.
|
639 |
+
|
640 |
+
This program is distributed in the hope that it will be useful,
|
641 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
642 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
643 |
+
GNU Affero General Public License for more details.
|
644 |
+
|
645 |
+
You should have received a copy of the GNU Affero General Public License
|
646 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
647 |
+
|
648 |
+
Also add information on how to contact you by electronic and paper mail.
|
649 |
+
|
650 |
+
If your software can interact with users remotely through a computer
|
651 |
+
network, you should also make sure that it provides a way for users to
|
652 |
+
get its source. For example, if your program is a web application, its
|
653 |
+
interface could display a "Source" link that leads users to an archive
|
654 |
+
of the code. There are many ways you could offer source, and different
|
655 |
+
solutions will be better for different programs; see section 13 for the
|
656 |
+
specific requirements.
|
657 |
+
|
658 |
+
You should also get your employer (if you work as a programmer) or school,
|
659 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
660 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
661 |
+
<https://www.gnu.org/licenses/>.
|
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: E402
|
2 |
+
|
3 |
+
import sys, os
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
7 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
8 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
9 |
+
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
10 |
+
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
|
13 |
+
)
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import argparse
|
19 |
+
import commons
|
20 |
+
import utils
|
21 |
+
from models import SynthesizerTrn
|
22 |
+
from text.symbols import symbols
|
23 |
+
from text import cleaned_text_to_sequence, get_bert
|
24 |
+
from text.cleaner import clean_text
|
25 |
+
import gradio as gr
|
26 |
+
import webbrowser
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
net_g = None
|
30 |
+
|
31 |
+
if sys.platform == "darwin" and torch.backends.mps.is_available():
|
32 |
+
device = "mps"
|
33 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
34 |
+
else:
|
35 |
+
device = "cuda"
|
36 |
+
|
37 |
+
|
38 |
+
def get_text(text, language_str, hps):
|
39 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
40 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
41 |
+
|
42 |
+
if hps.data.add_blank:
|
43 |
+
phone = commons.intersperse(phone, 0)
|
44 |
+
tone = commons.intersperse(tone, 0)
|
45 |
+
language = commons.intersperse(language, 0)
|
46 |
+
for i in range(len(word2ph)):
|
47 |
+
word2ph[i] = word2ph[i] * 2
|
48 |
+
word2ph[0] += 1
|
49 |
+
bert = get_bert(norm_text, word2ph, language_str, device)
|
50 |
+
del word2ph
|
51 |
+
assert bert.shape[-1] == len(phone), phone
|
52 |
+
|
53 |
+
if language_str == "ZH":
|
54 |
+
bert = bert
|
55 |
+
ja_bert = torch.zeros(768, len(phone))
|
56 |
+
elif language_str == "JP":
|
57 |
+
ja_bert = bert
|
58 |
+
bert = torch.zeros(1024, len(phone))
|
59 |
+
else:
|
60 |
+
bert = torch.zeros(1024, len(phone))
|
61 |
+
ja_bert = torch.zeros(768, len(phone))
|
62 |
+
|
63 |
+
assert bert.shape[-1] == len(
|
64 |
+
phone
|
65 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
66 |
+
|
67 |
+
phone = torch.LongTensor(phone)
|
68 |
+
tone = torch.LongTensor(tone)
|
69 |
+
language = torch.LongTensor(language)
|
70 |
+
return bert, ja_bert, phone, tone, language
|
71 |
+
|
72 |
+
|
73 |
+
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
74 |
+
global net_g
|
75 |
+
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
76 |
+
with torch.no_grad():
|
77 |
+
x_tst = phones.to(device).unsqueeze(0)
|
78 |
+
tones = tones.to(device).unsqueeze(0)
|
79 |
+
lang_ids = lang_ids.to(device).unsqueeze(0)
|
80 |
+
bert = bert.to(device).unsqueeze(0)
|
81 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
82 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
|
83 |
+
del phones
|
84 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
|
85 |
+
audio = (
|
86 |
+
net_g.infer(
|
87 |
+
x_tst,
|
88 |
+
x_tst_lengths,
|
89 |
+
speakers,
|
90 |
+
tones,
|
91 |
+
lang_ids,
|
92 |
+
bert,
|
93 |
+
ja_bert,
|
94 |
+
sdp_ratio=sdp_ratio,
|
95 |
+
noise_scale=noise_scale,
|
96 |
+
noise_scale_w=noise_scale_w,
|
97 |
+
length_scale=length_scale,
|
98 |
+
)[0][0, 0]
|
99 |
+
.data.cpu()
|
100 |
+
.float()
|
101 |
+
.numpy()
|
102 |
+
)
|
103 |
+
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
|
104 |
+
torch.cuda.empty_cache()
|
105 |
+
return audio
|
106 |
+
|
107 |
+
__LOG__ = "./generation_logs.txt"
|
108 |
+
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language):
|
109 |
+
with open(__LOG__,"a") as f:
|
110 |
+
f.write(f"{text} | {speaker}\n")
|
111 |
+
print(f"{text} | {speaker}")
|
112 |
+
slices = text.split("|")
|
113 |
+
audio_list = []
|
114 |
+
with torch.no_grad():
|
115 |
+
for slice in slices:
|
116 |
+
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker, language=language)
|
117 |
+
audio_list.append(audio)
|
118 |
+
silence = np.zeros(hps.data.sampling_rate) # 生成1秒的静音
|
119 |
+
audio_list.append(silence) # 将静音添加到列表中
|
120 |
+
audio_concat = np.concatenate(audio_list)
|
121 |
+
return "Success", (hps.data.sampling_rate, audio_concat)
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
parser = argparse.ArgumentParser()
|
125 |
+
parser.add_argument(
|
126 |
+
"-m", "--model", default="./logs/umamusume/G_138000.pth", help="path of your model"
|
127 |
+
)
|
128 |
+
parser.add_argument(
|
129 |
+
"-c",
|
130 |
+
"--config",
|
131 |
+
default="./configs/config.json",
|
132 |
+
help="path of your config file",
|
133 |
+
)
|
134 |
+
parser.add_argument(
|
135 |
+
"--share", default=False, help="make link public", action="store_true"
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
|
139 |
+
)
|
140 |
+
|
141 |
+
args = parser.parse_args()
|
142 |
+
if args.debug:
|
143 |
+
logger.info("Enable DEBUG-LEVEL log")
|
144 |
+
logging.basicConfig(level=logging.DEBUG)
|
145 |
+
hps = utils.get_hparams_from_file(args.config)
|
146 |
+
|
147 |
+
device = (
|
148 |
+
"cuda:0"
|
149 |
+
if torch.cuda.is_available()
|
150 |
+
else (
|
151 |
+
"mps"
|
152 |
+
if sys.platform == "darwin" and torch.backends.mps.is_available()
|
153 |
+
else "cpu"
|
154 |
+
)
|
155 |
+
)
|
156 |
+
net_g = SynthesizerTrn(
|
157 |
+
len(symbols),
|
158 |
+
hps.data.filter_length // 2 + 1,
|
159 |
+
hps.train.segment_size // hps.data.hop_length,
|
160 |
+
n_speakers=hps.data.n_speakers,
|
161 |
+
**hps.model,
|
162 |
+
).to(device)
|
163 |
+
_ = net_g.eval()
|
164 |
+
|
165 |
+
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
|
166 |
+
|
167 |
+
speaker_ids = hps.data.spk2id
|
168 |
+
speakers = list(speaker_ids.keys())
|
169 |
+
languages = ["ZH", "JP"]
|
170 |
+
with gr.Blocks() as app:
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
text = gr.TextArea(
|
174 |
+
label="Text",
|
175 |
+
placeholder="Input Text Here",
|
176 |
+
value="はりきっていこう!",
|
177 |
+
)
|
178 |
+
speaker = gr.Dropdown(
|
179 |
+
choices=speakers, value=speakers[0], label="Speaker"
|
180 |
+
)
|
181 |
+
sdp_ratio = gr.Slider(
|
182 |
+
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
|
183 |
+
)
|
184 |
+
noise_scale = gr.Slider(
|
185 |
+
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
|
186 |
+
)
|
187 |
+
noise_scale_w = gr.Slider(
|
188 |
+
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
|
189 |
+
)
|
190 |
+
length_scale = gr.Slider(
|
191 |
+
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
|
192 |
+
)
|
193 |
+
language = gr.Dropdown(
|
194 |
+
choices=languages, value=languages[1], label="Language"
|
195 |
+
)
|
196 |
+
btn = gr.Button("Generate!", variant="primary")
|
197 |
+
with gr.Column():
|
198 |
+
text_output = gr.Textbox(label="Message")
|
199 |
+
audio_output = gr.Audio(label="Output Audio")
|
200 |
+
|
201 |
+
btn.click(
|
202 |
+
tts_fn,
|
203 |
+
inputs=[
|
204 |
+
text,
|
205 |
+
speaker,
|
206 |
+
sdp_ratio,
|
207 |
+
noise_scale,
|
208 |
+
noise_scale_w,
|
209 |
+
length_scale,
|
210 |
+
language,
|
211 |
+
],
|
212 |
+
outputs=[text_output, audio_output],
|
213 |
+
)
|
214 |
+
|
215 |
+
app.launch()
|
attentions.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class LayerNorm(nn.Module):
|
13 |
+
def __init__(self, channels, eps=1e-5):
|
14 |
+
super().__init__()
|
15 |
+
self.channels = channels
|
16 |
+
self.eps = eps
|
17 |
+
|
18 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
19 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = x.transpose(1, -1)
|
23 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
24 |
+
return x.transpose(1, -1)
|
25 |
+
|
26 |
+
|
27 |
+
@torch.jit.script
|
28 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
29 |
+
n_channels_int = n_channels[0]
|
30 |
+
in_act = input_a + input_b
|
31 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
32 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
33 |
+
acts = t_act * s_act
|
34 |
+
return acts
|
35 |
+
|
36 |
+
|
37 |
+
class Encoder(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
hidden_channels,
|
41 |
+
filter_channels,
|
42 |
+
n_heads,
|
43 |
+
n_layers,
|
44 |
+
kernel_size=1,
|
45 |
+
p_dropout=0.0,
|
46 |
+
window_size=4,
|
47 |
+
isflow=True,
|
48 |
+
**kwargs
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.hidden_channels = hidden_channels
|
52 |
+
self.filter_channels = filter_channels
|
53 |
+
self.n_heads = n_heads
|
54 |
+
self.n_layers = n_layers
|
55 |
+
self.kernel_size = kernel_size
|
56 |
+
self.p_dropout = p_dropout
|
57 |
+
self.window_size = window_size
|
58 |
+
# if isflow:
|
59 |
+
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
60 |
+
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
61 |
+
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
62 |
+
# self.gin_channels = 256
|
63 |
+
self.cond_layer_idx = self.n_layers
|
64 |
+
if "gin_channels" in kwargs:
|
65 |
+
self.gin_channels = kwargs["gin_channels"]
|
66 |
+
if self.gin_channels != 0:
|
67 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
68 |
+
# vits2 says 3rd block, so idx is 2 by default
|
69 |
+
self.cond_layer_idx = (
|
70 |
+
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
71 |
+
)
|
72 |
+
logging.debug(self.gin_channels, self.cond_layer_idx)
|
73 |
+
assert (
|
74 |
+
self.cond_layer_idx < self.n_layers
|
75 |
+
), "cond_layer_idx should be less than n_layers"
|
76 |
+
self.drop = nn.Dropout(p_dropout)
|
77 |
+
self.attn_layers = nn.ModuleList()
|
78 |
+
self.norm_layers_1 = nn.ModuleList()
|
79 |
+
self.ffn_layers = nn.ModuleList()
|
80 |
+
self.norm_layers_2 = nn.ModuleList()
|
81 |
+
for i in range(self.n_layers):
|
82 |
+
self.attn_layers.append(
|
83 |
+
MultiHeadAttention(
|
84 |
+
hidden_channels,
|
85 |
+
hidden_channels,
|
86 |
+
n_heads,
|
87 |
+
p_dropout=p_dropout,
|
88 |
+
window_size=window_size,
|
89 |
+
)
|
90 |
+
)
|
91 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
92 |
+
self.ffn_layers.append(
|
93 |
+
FFN(
|
94 |
+
hidden_channels,
|
95 |
+
hidden_channels,
|
96 |
+
filter_channels,
|
97 |
+
kernel_size,
|
98 |
+
p_dropout=p_dropout,
|
99 |
+
)
|
100 |
+
)
|
101 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
102 |
+
|
103 |
+
def forward(self, x, x_mask, g=None):
|
104 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
105 |
+
x = x * x_mask
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
if i == self.cond_layer_idx and g is not None:
|
108 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
109 |
+
g = g.transpose(1, 2)
|
110 |
+
x = x + g
|
111 |
+
x = x * x_mask
|
112 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
113 |
+
y = self.drop(y)
|
114 |
+
x = self.norm_layers_1[i](x + y)
|
115 |
+
|
116 |
+
y = self.ffn_layers[i](x, x_mask)
|
117 |
+
y = self.drop(y)
|
118 |
+
x = self.norm_layers_2[i](x + y)
|
119 |
+
x = x * x_mask
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class Decoder(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
hidden_channels,
|
127 |
+
filter_channels,
|
128 |
+
n_heads,
|
129 |
+
n_layers,
|
130 |
+
kernel_size=1,
|
131 |
+
p_dropout=0.0,
|
132 |
+
proximal_bias=False,
|
133 |
+
proximal_init=True,
|
134 |
+
**kwargs
|
135 |
+
):
|
136 |
+
super().__init__()
|
137 |
+
self.hidden_channels = hidden_channels
|
138 |
+
self.filter_channels = filter_channels
|
139 |
+
self.n_heads = n_heads
|
140 |
+
self.n_layers = n_layers
|
141 |
+
self.kernel_size = kernel_size
|
142 |
+
self.p_dropout = p_dropout
|
143 |
+
self.proximal_bias = proximal_bias
|
144 |
+
self.proximal_init = proximal_init
|
145 |
+
|
146 |
+
self.drop = nn.Dropout(p_dropout)
|
147 |
+
self.self_attn_layers = nn.ModuleList()
|
148 |
+
self.norm_layers_0 = nn.ModuleList()
|
149 |
+
self.encdec_attn_layers = nn.ModuleList()
|
150 |
+
self.norm_layers_1 = nn.ModuleList()
|
151 |
+
self.ffn_layers = nn.ModuleList()
|
152 |
+
self.norm_layers_2 = nn.ModuleList()
|
153 |
+
for i in range(self.n_layers):
|
154 |
+
self.self_attn_layers.append(
|
155 |
+
MultiHeadAttention(
|
156 |
+
hidden_channels,
|
157 |
+
hidden_channels,
|
158 |
+
n_heads,
|
159 |
+
p_dropout=p_dropout,
|
160 |
+
proximal_bias=proximal_bias,
|
161 |
+
proximal_init=proximal_init,
|
162 |
+
)
|
163 |
+
)
|
164 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
165 |
+
self.encdec_attn_layers.append(
|
166 |
+
MultiHeadAttention(
|
167 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
168 |
+
)
|
169 |
+
)
|
170 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
171 |
+
self.ffn_layers.append(
|
172 |
+
FFN(
|
173 |
+
hidden_channels,
|
174 |
+
hidden_channels,
|
175 |
+
filter_channels,
|
176 |
+
kernel_size,
|
177 |
+
p_dropout=p_dropout,
|
178 |
+
causal=True,
|
179 |
+
)
|
180 |
+
)
|
181 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
182 |
+
|
183 |
+
def forward(self, x, x_mask, h, h_mask):
|
184 |
+
"""
|
185 |
+
x: decoder input
|
186 |
+
h: encoder output
|
187 |
+
"""
|
188 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
189 |
+
device=x.device, dtype=x.dtype
|
190 |
+
)
|
191 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
192 |
+
x = x * x_mask
|
193 |
+
for i in range(self.n_layers):
|
194 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
195 |
+
y = self.drop(y)
|
196 |
+
x = self.norm_layers_0[i](x + y)
|
197 |
+
|
198 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
199 |
+
y = self.drop(y)
|
200 |
+
x = self.norm_layers_1[i](x + y)
|
201 |
+
|
202 |
+
y = self.ffn_layers[i](x, x_mask)
|
203 |
+
y = self.drop(y)
|
204 |
+
x = self.norm_layers_2[i](x + y)
|
205 |
+
x = x * x_mask
|
206 |
+
return x
|
207 |
+
|
208 |
+
|
209 |
+
class MultiHeadAttention(nn.Module):
|
210 |
+
def __init__(
|
211 |
+
self,
|
212 |
+
channels,
|
213 |
+
out_channels,
|
214 |
+
n_heads,
|
215 |
+
p_dropout=0.0,
|
216 |
+
window_size=None,
|
217 |
+
heads_share=True,
|
218 |
+
block_length=None,
|
219 |
+
proximal_bias=False,
|
220 |
+
proximal_init=False,
|
221 |
+
):
|
222 |
+
super().__init__()
|
223 |
+
assert channels % n_heads == 0
|
224 |
+
|
225 |
+
self.channels = channels
|
226 |
+
self.out_channels = out_channels
|
227 |
+
self.n_heads = n_heads
|
228 |
+
self.p_dropout = p_dropout
|
229 |
+
self.window_size = window_size
|
230 |
+
self.heads_share = heads_share
|
231 |
+
self.block_length = block_length
|
232 |
+
self.proximal_bias = proximal_bias
|
233 |
+
self.proximal_init = proximal_init
|
234 |
+
self.attn = None
|
235 |
+
|
236 |
+
self.k_channels = channels // n_heads
|
237 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
238 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
239 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
240 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
241 |
+
self.drop = nn.Dropout(p_dropout)
|
242 |
+
|
243 |
+
if window_size is not None:
|
244 |
+
n_heads_rel = 1 if heads_share else n_heads
|
245 |
+
rel_stddev = self.k_channels**-0.5
|
246 |
+
self.emb_rel_k = nn.Parameter(
|
247 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
248 |
+
* rel_stddev
|
249 |
+
)
|
250 |
+
self.emb_rel_v = nn.Parameter(
|
251 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
252 |
+
* rel_stddev
|
253 |
+
)
|
254 |
+
|
255 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
256 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
257 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
258 |
+
if proximal_init:
|
259 |
+
with torch.no_grad():
|
260 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
261 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
262 |
+
|
263 |
+
def forward(self, x, c, attn_mask=None):
|
264 |
+
q = self.conv_q(x)
|
265 |
+
k = self.conv_k(c)
|
266 |
+
v = self.conv_v(c)
|
267 |
+
|
268 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
269 |
+
|
270 |
+
x = self.conv_o(x)
|
271 |
+
return x
|
272 |
+
|
273 |
+
def attention(self, query, key, value, mask=None):
|
274 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
275 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
276 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
277 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
278 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
279 |
+
|
280 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
281 |
+
if self.window_size is not None:
|
282 |
+
assert (
|
283 |
+
t_s == t_t
|
284 |
+
), "Relative attention is only available for self-attention."
|
285 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
286 |
+
rel_logits = self._matmul_with_relative_keys(
|
287 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
288 |
+
)
|
289 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
290 |
+
scores = scores + scores_local
|
291 |
+
if self.proximal_bias:
|
292 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
293 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
294 |
+
device=scores.device, dtype=scores.dtype
|
295 |
+
)
|
296 |
+
if mask is not None:
|
297 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
298 |
+
if self.block_length is not None:
|
299 |
+
assert (
|
300 |
+
t_s == t_t
|
301 |
+
), "Local attention is only available for self-attention."
|
302 |
+
block_mask = (
|
303 |
+
torch.ones_like(scores)
|
304 |
+
.triu(-self.block_length)
|
305 |
+
.tril(self.block_length)
|
306 |
+
)
|
307 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
308 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
309 |
+
p_attn = self.drop(p_attn)
|
310 |
+
output = torch.matmul(p_attn, value)
|
311 |
+
if self.window_size is not None:
|
312 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
313 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
314 |
+
self.emb_rel_v, t_s
|
315 |
+
)
|
316 |
+
output = output + self._matmul_with_relative_values(
|
317 |
+
relative_weights, value_relative_embeddings
|
318 |
+
)
|
319 |
+
output = (
|
320 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
321 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
322 |
+
return output, p_attn
|
323 |
+
|
324 |
+
def _matmul_with_relative_values(self, x, y):
|
325 |
+
"""
|
326 |
+
x: [b, h, l, m]
|
327 |
+
y: [h or 1, m, d]
|
328 |
+
ret: [b, h, l, d]
|
329 |
+
"""
|
330 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
331 |
+
return ret
|
332 |
+
|
333 |
+
def _matmul_with_relative_keys(self, x, y):
|
334 |
+
"""
|
335 |
+
x: [b, h, l, d]
|
336 |
+
y: [h or 1, m, d]
|
337 |
+
ret: [b, h, l, m]
|
338 |
+
"""
|
339 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
340 |
+
return ret
|
341 |
+
|
342 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
343 |
+
2 * self.window_size + 1
|
344 |
+
# Pad first before slice to avoid using cond ops.
|
345 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
346 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
347 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
348 |
+
if pad_length > 0:
|
349 |
+
padded_relative_embeddings = F.pad(
|
350 |
+
relative_embeddings,
|
351 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
padded_relative_embeddings = relative_embeddings
|
355 |
+
used_relative_embeddings = padded_relative_embeddings[
|
356 |
+
:, slice_start_position:slice_end_position
|
357 |
+
]
|
358 |
+
return used_relative_embeddings
|
359 |
+
|
360 |
+
def _relative_position_to_absolute_position(self, x):
|
361 |
+
"""
|
362 |
+
x: [b, h, l, 2*l-1]
|
363 |
+
ret: [b, h, l, l]
|
364 |
+
"""
|
365 |
+
batch, heads, length, _ = x.size()
|
366 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
367 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
368 |
+
|
369 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
370 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
371 |
+
x_flat = F.pad(
|
372 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
373 |
+
)
|
374 |
+
|
375 |
+
# Reshape and slice out the padded elements.
|
376 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
377 |
+
:, :, :length, length - 1 :
|
378 |
+
]
|
379 |
+
return x_final
|
380 |
+
|
381 |
+
def _absolute_position_to_relative_position(self, x):
|
382 |
+
"""
|
383 |
+
x: [b, h, l, l]
|
384 |
+
ret: [b, h, l, 2*l-1]
|
385 |
+
"""
|
386 |
+
batch, heads, length, _ = x.size()
|
387 |
+
# pad along column
|
388 |
+
x = F.pad(
|
389 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
390 |
+
)
|
391 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
392 |
+
# add 0's in the beginning that will skew the elements after reshape
|
393 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
394 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
395 |
+
return x_final
|
396 |
+
|
397 |
+
def _attention_bias_proximal(self, length):
|
398 |
+
"""Bias for self-attention to encourage attention to close positions.
|
399 |
+
Args:
|
400 |
+
length: an integer scalar.
|
401 |
+
Returns:
|
402 |
+
a Tensor with shape [1, 1, length, length]
|
403 |
+
"""
|
404 |
+
r = torch.arange(length, dtype=torch.float32)
|
405 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
406 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
407 |
+
|
408 |
+
|
409 |
+
class FFN(nn.Module):
|
410 |
+
def __init__(
|
411 |
+
self,
|
412 |
+
in_channels,
|
413 |
+
out_channels,
|
414 |
+
filter_channels,
|
415 |
+
kernel_size,
|
416 |
+
p_dropout=0.0,
|
417 |
+
activation=None,
|
418 |
+
causal=False,
|
419 |
+
):
|
420 |
+
super().__init__()
|
421 |
+
self.in_channels = in_channels
|
422 |
+
self.out_channels = out_channels
|
423 |
+
self.filter_channels = filter_channels
|
424 |
+
self.kernel_size = kernel_size
|
425 |
+
self.p_dropout = p_dropout
|
426 |
+
self.activation = activation
|
427 |
+
self.causal = causal
|
428 |
+
|
429 |
+
if causal:
|
430 |
+
self.padding = self._causal_padding
|
431 |
+
else:
|
432 |
+
self.padding = self._same_padding
|
433 |
+
|
434 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
435 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
436 |
+
self.drop = nn.Dropout(p_dropout)
|
437 |
+
|
438 |
+
def forward(self, x, x_mask):
|
439 |
+
x = self.conv_1(self.padding(x * x_mask))
|
440 |
+
if self.activation == "gelu":
|
441 |
+
x = x * torch.sigmoid(1.702 * x)
|
442 |
+
else:
|
443 |
+
x = torch.relu(x)
|
444 |
+
x = self.drop(x)
|
445 |
+
x = self.conv_2(self.padding(x * x_mask))
|
446 |
+
return x * x_mask
|
447 |
+
|
448 |
+
def _causal_padding(self, x):
|
449 |
+
if self.kernel_size == 1:
|
450 |
+
return x
|
451 |
+
pad_l = self.kernel_size - 1
|
452 |
+
pad_r = 0
|
453 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
454 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
455 |
+
return x
|
456 |
+
|
457 |
+
def _same_padding(self, x):
|
458 |
+
if self.kernel_size == 1:
|
459 |
+
return x
|
460 |
+
pad_l = (self.kernel_size - 1) // 2
|
461 |
+
pad_r = self.kernel_size // 2
|
462 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
463 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
464 |
+
return x
|
bert/bert-base-japanese-v3/README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- cc100
|
5 |
+
- wikipedia
|
6 |
+
language:
|
7 |
+
- ja
|
8 |
+
widget:
|
9 |
+
- text: 東北大学で[MASK]の研究をしています。
|
10 |
+
---
|
11 |
+
|
12 |
+
# BERT base Japanese (unidic-lite with whole word masking, CC-100 and jawiki-20230102)
|
13 |
+
|
14 |
+
This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language.
|
15 |
+
|
16 |
+
This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization.
|
17 |
+
Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective.
|
18 |
+
|
19 |
+
The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/).
|
20 |
+
|
21 |
+
## Model architecture
|
22 |
+
|
23 |
+
The model architecture is the same as the original BERT base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
|
24 |
+
|
25 |
+
## Training Data
|
26 |
+
|
27 |
+
The model is trained on the Japanese portion of [CC-100 dataset](https://data.statmt.org/cc-100/) and the Japanese version of Wikipedia.
|
28 |
+
For Wikipedia, we generated a text corpus from the [Wikipedia Cirrussearch dump file](https://dumps.wikimedia.org/other/cirrussearch/) as of January 2, 2023.
|
29 |
+
The corpus files generated from CC-100 and Wikipedia are 74.3GB and 4.9GB in size and consist of approximately 392M and 34M sentences, respectively.
|
30 |
+
|
31 |
+
For the purpose of splitting texts into sentences, we used [fugashi](https://github.com/polm/fugashi) with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary (v0.0.7).
|
32 |
+
|
33 |
+
## Tokenization
|
34 |
+
|
35 |
+
The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm.
|
36 |
+
The vocabulary size is 32768.
|
37 |
+
|
38 |
+
We used [fugashi](https://github.com/polm/fugashi) and [unidic-lite](https://github.com/polm/unidic-lite) packages for the tokenization.
|
39 |
+
|
40 |
+
## Training
|
41 |
+
|
42 |
+
We trained the model first on the CC-100 corpus for 1M steps and then on the Wikipedia corpus for another 1M steps.
|
43 |
+
For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.
|
44 |
+
|
45 |
+
For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/).
|
46 |
+
|
47 |
+
## Licenses
|
48 |
+
|
49 |
+
The pretrained models are distributed under the Apache License 2.0.
|
50 |
+
|
51 |
+
## Acknowledgments
|
52 |
+
|
53 |
+
This model is trained with Cloud TPUs provided by [TPU Research Cloud](https://sites.research.google/trc/about/) program.
|
bert/bert-base-japanese-v3/config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForPreTraining"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 3072,
|
11 |
+
"layer_norm_eps": 1e-12,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "bert",
|
14 |
+
"num_attention_heads": 12,
|
15 |
+
"num_hidden_layers": 12,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"vocab_size": 32768
|
19 |
+
}
|
bert/bert-base-japanese-v3/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e172862e0674054d65e0ba40d67df2a4687982f589db44aa27091c386e5450a4
|
3 |
+
size 447406217
|
bert/bert-base-japanese-v3/tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
3 |
+
"model_max_length": 512,
|
4 |
+
"do_lower_case": false,
|
5 |
+
"word_tokenizer_type": "mecab",
|
6 |
+
"subword_tokenizer_type": "wordpiece",
|
7 |
+
"mecab_kwargs": {
|
8 |
+
"mecab_dic": "unidic_lite"
|
9 |
+
}
|
10 |
+
}
|
bert/bert-base-japanese-v3/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert/chinese-roberta-wwm-ext-large/.gitattributes
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
bert/chinese-roberta-wwm-ext-large/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.bin
|
bert/chinese-roberta-wwm-ext-large/README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
tags:
|
5 |
+
- bert
|
6 |
+
license: "apache-2.0"
|
7 |
+
---
|
8 |
+
|
9 |
+
# Please use 'Bert' related functions to load this model!
|
10 |
+
|
11 |
+
## Chinese BERT with Whole Word Masking
|
12 |
+
For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
|
13 |
+
|
14 |
+
**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
|
15 |
+
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
|
16 |
+
|
17 |
+
This repository is developed based on:https://github.com/google-research/bert
|
18 |
+
|
19 |
+
You may also interested in,
|
20 |
+
- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
|
21 |
+
- Chinese MacBERT: https://github.com/ymcui/MacBERT
|
22 |
+
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
|
23 |
+
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
|
24 |
+
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
|
25 |
+
|
26 |
+
More resources by HFL: https://github.com/ymcui/HFL-Anthology
|
27 |
+
|
28 |
+
## Citation
|
29 |
+
If you find the technical report or resource is useful, please cite the following technical report in your paper.
|
30 |
+
- Primary: https://arxiv.org/abs/2004.13922
|
31 |
+
```
|
32 |
+
@inproceedings{cui-etal-2020-revisiting,
|
33 |
+
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
|
34 |
+
author = "Cui, Yiming and
|
35 |
+
Che, Wanxiang and
|
36 |
+
Liu, Ting and
|
37 |
+
Qin, Bing and
|
38 |
+
Wang, Shijin and
|
39 |
+
Hu, Guoping",
|
40 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
|
41 |
+
month = nov,
|
42 |
+
year = "2020",
|
43 |
+
address = "Online",
|
44 |
+
publisher = "Association for Computational Linguistics",
|
45 |
+
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
|
46 |
+
pages = "657--668",
|
47 |
+
}
|
48 |
+
```
|
49 |
+
- Secondary: https://arxiv.org/abs/1906.08101
|
50 |
+
```
|
51 |
+
@article{chinese-bert-wwm,
|
52 |
+
title={Pre-Training with Whole Word Masking for Chinese BERT},
|
53 |
+
author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
|
54 |
+
journal={arXiv preprint arXiv:1906.08101},
|
55 |
+
year={2019}
|
56 |
+
}
|
57 |
+
```
|
bert/chinese-roberta-wwm-ext-large/added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
bert/chinese-roberta-wwm-ext-large/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"type_vocab_size": 2,
|
27 |
+
"vocab_size": 21128
|
28 |
+
}
|
bert/chinese-roberta-wwm-ext-large/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
bert/chinese-roberta-wwm-ext-large/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert/chinese-roberta-wwm-ext-large/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"init_inputs": []}
|
bert/chinese-roberta-wwm-ext-large/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert_gen.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from multiprocessing import Pool
|
3 |
+
import commons
|
4 |
+
import utils
|
5 |
+
from tqdm import tqdm
|
6 |
+
from text import cleaned_text_to_sequence, get_bert
|
7 |
+
import argparse
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
|
10 |
+
import os
|
11 |
+
os.environ['http_proxy'] = 'http://localhost:11796'
|
12 |
+
os.environ['https_proxy'] = 'http://localhost:11796'
|
13 |
+
def process_line(line):
|
14 |
+
rank = mp.current_process()._identity
|
15 |
+
rank = rank[0] if len(rank) > 0 else 0
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
gpu_id = rank % torch.cuda.device_count()
|
18 |
+
device = torch.device(f"cuda:{gpu_id}")
|
19 |
+
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
|
20 |
+
phone = phones.split(" ")
|
21 |
+
tone = [int(i) for i in tone.split(" ")]
|
22 |
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
23 |
+
word2ph = [i for i in word2ph]
|
24 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
25 |
+
|
26 |
+
phone = commons.intersperse(phone, 0)
|
27 |
+
tone = commons.intersperse(tone, 0)
|
28 |
+
language = commons.intersperse(language, 0)
|
29 |
+
for i in range(len(word2ph)):
|
30 |
+
word2ph[i] = word2ph[i] * 2
|
31 |
+
word2ph[0] += 1
|
32 |
+
|
33 |
+
bert_path = wav_path.replace(".wav", ".bert.pt")
|
34 |
+
|
35 |
+
try:
|
36 |
+
bert = torch.load(bert_path)
|
37 |
+
assert bert.shape[-1] == len(phone)
|
38 |
+
except Exception:
|
39 |
+
bert = get_bert(text, word2ph, language_str, device)
|
40 |
+
assert bert.shape[-1] == len(phone)
|
41 |
+
torch.save(bert, bert_path)
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
parser = argparse.ArgumentParser()
|
46 |
+
parser.add_argument("-c", "--config", type=str, default="configs/config.json")
|
47 |
+
parser.add_argument("--num_processes", type=int, default=2)
|
48 |
+
args = parser.parse_args()
|
49 |
+
config_path = args.config
|
50 |
+
hps = utils.get_hparams_from_file(config_path)
|
51 |
+
lines = []
|
52 |
+
with open(hps.data.training_files, encoding="utf-8") as f:
|
53 |
+
lines.extend(f.readlines())
|
54 |
+
|
55 |
+
with open(hps.data.validation_files, encoding="utf-8") as f:
|
56 |
+
lines.extend(f.readlines())
|
57 |
+
|
58 |
+
num_processes = args.num_processes
|
59 |
+
with Pool(processes=num_processes) as pool:
|
60 |
+
for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)):
|
61 |
+
pass
|
commons.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def init_weights(m, mean=0.0, std=0.01):
|
7 |
+
classname = m.__class__.__name__
|
8 |
+
if classname.find("Conv") != -1:
|
9 |
+
m.weight.data.normal_(mean, std)
|
10 |
+
|
11 |
+
|
12 |
+
def get_padding(kernel_size, dilation=1):
|
13 |
+
return int((kernel_size * dilation - dilation) / 2)
|
14 |
+
|
15 |
+
|
16 |
+
def convert_pad_shape(pad_shape):
|
17 |
+
layer = pad_shape[::-1]
|
18 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += (
|
32 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
33 |
+
)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
68 |
+
position = torch.arange(length, dtype=torch.float)
|
69 |
+
num_timescales = channels // 2
|
70 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
71 |
+
num_timescales - 1
|
72 |
+
)
|
73 |
+
inv_timescales = min_timescale * torch.exp(
|
74 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
75 |
+
)
|
76 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
+
signal = signal.view(1, channels, length)
|
80 |
+
return signal
|
81 |
+
|
82 |
+
|
83 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
+
b, channels, length = x.size()
|
85 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
+
|
88 |
+
|
89 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
+
|
94 |
+
|
95 |
+
def subsequent_mask(length):
|
96 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
+
return mask
|
98 |
+
|
99 |
+
|
100 |
+
@torch.jit.script
|
101 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
+
n_channels_int = n_channels[0]
|
103 |
+
in_act = input_a + input_b
|
104 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
105 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
106 |
+
acts = t_act * s_act
|
107 |
+
return acts
|
108 |
+
|
109 |
+
|
110 |
+
def convert_pad_shape(pad_shape):
|
111 |
+
layer = pad_shape[::-1]
|
112 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
113 |
+
return pad_shape
|
114 |
+
|
115 |
+
|
116 |
+
def shift_1d(x):
|
117 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
def sequence_mask(length, max_length=None):
|
122 |
+
if max_length is None:
|
123 |
+
max_length = length.max()
|
124 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
125 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
def generate_path(duration, mask):
|
129 |
+
"""
|
130 |
+
duration: [b, 1, t_x]
|
131 |
+
mask: [b, 1, t_y, t_x]
|
132 |
+
"""
|
133 |
+
|
134 |
+
b, _, t_y, t_x = mask.shape
|
135 |
+
cum_duration = torch.cumsum(duration, -1)
|
136 |
+
|
137 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
138 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
139 |
+
path = path.view(b, t_x, t_y)
|
140 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
141 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
142 |
+
return path
|
143 |
+
|
144 |
+
|
145 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
146 |
+
if isinstance(parameters, torch.Tensor):
|
147 |
+
parameters = [parameters]
|
148 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
149 |
+
norm_type = float(norm_type)
|
150 |
+
if clip_value is not None:
|
151 |
+
clip_value = float(clip_value)
|
152 |
+
|
153 |
+
total_norm = 0
|
154 |
+
for p in parameters:
|
155 |
+
param_norm = p.grad.data.norm(norm_type)
|
156 |
+
total_norm += param_norm.item() ** norm_type
|
157 |
+
if clip_value is not None:
|
158 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
159 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
160 |
+
return total_norm
|
configs/config.json
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 20,
|
4 |
+
"eval_interval": 500,
|
5 |
+
"seed": 52,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 0.0001,
|
8 |
+
"betas": [
|
9 |
+
0.8,
|
10 |
+
0.99
|
11 |
+
],
|
12 |
+
"eps": 1e-09,
|
13 |
+
"batch_size": 4,
|
14 |
+
"fp16_run": false,
|
15 |
+
"lr_decay": 0.999875,
|
16 |
+
"segment_size": 16384,
|
17 |
+
"init_lr_ratio": 1,
|
18 |
+
"warmup_epochs": 0,
|
19 |
+
"c_mel": 45,
|
20 |
+
"c_kl": 1.0,
|
21 |
+
"skip_optimizer": true
|
22 |
+
},
|
23 |
+
"data": {
|
24 |
+
"training_files": "filelists/train.list",
|
25 |
+
"validation_files": "filelists/val.list",
|
26 |
+
"max_wav_value": 32768.0,
|
27 |
+
"sampling_rate": 44100,
|
28 |
+
"filter_length": 2048,
|
29 |
+
"hop_length": 512,
|
30 |
+
"win_length": 2048,
|
31 |
+
"n_mel_channels": 128,
|
32 |
+
"mel_fmin": 0.0,
|
33 |
+
"mel_fmax": null,
|
34 |
+
"add_blank": true,
|
35 |
+
"n_speakers": 256,
|
36 |
+
"cleaned_text": true,
|
37 |
+
"spk2id": {
|
38 |
+
"特别周": 0,
|
39 |
+
"无声铃鹿": 1,
|
40 |
+
"丸善斯基": 2,
|
41 |
+
"富士奇迹": 3,
|
42 |
+
"东海帝皇": 4,
|
43 |
+
"小栗帽": 5,
|
44 |
+
"黄金船": 6,
|
45 |
+
"伏特加": 7,
|
46 |
+
"大和赤骥": 8,
|
47 |
+
"菱亚马逊": 9,
|
48 |
+
"草上飞": 10,
|
49 |
+
"大树快车": 11,
|
50 |
+
"目白麦昆": 12,
|
51 |
+
"神鹰": 13,
|
52 |
+
"鲁道夫象征": 14,
|
53 |
+
"好歌剧": 15,
|
54 |
+
"成田白仁": 16,
|
55 |
+
"爱丽数码": 17,
|
56 |
+
"美妙姿势": 18,
|
57 |
+
"摩耶重炮": 19,
|
58 |
+
"玉藻十字": 20,
|
59 |
+
"琵琶晨光": 21,
|
60 |
+
"目白赖恩": 22,
|
61 |
+
"美浦波旁": 23,
|
62 |
+
"雪中美人": 24,
|
63 |
+
"米浴": 25,
|
64 |
+
"爱丽速子": 26,
|
65 |
+
"爱慕织姬": 27,
|
66 |
+
"曼城茶座": 28,
|
67 |
+
"气槽": 29,
|
68 |
+
"星云天空": 30,
|
69 |
+
"菱曙": 31,
|
70 |
+
"艾尼斯风神": 32,
|
71 |
+
"稻荷一": 33,
|
72 |
+
"空中神宫": 34,
|
73 |
+
"川上公主": 35,
|
74 |
+
"黄金城": 36,
|
75 |
+
"真机伶": 37,
|
76 |
+
"荣进闪耀": 38,
|
77 |
+
"采珠": 39,
|
78 |
+
"新光风": 40,
|
79 |
+
"超级小海湾": 41,
|
80 |
+
"荒漠英雄": 42,
|
81 |
+
"东瀛佐敦": 43,
|
82 |
+
"中山庆典": 44,
|
83 |
+
"成田大进": 45,
|
84 |
+
"西野花": 46,
|
85 |
+
"醒目飞鹰": 47,
|
86 |
+
"春乌拉拉": 48,
|
87 |
+
"青竹回忆": 49,
|
88 |
+
"待兼福来": 50,
|
89 |
+
"Mr CB": 51,
|
90 |
+
"美丽周日": 52,
|
91 |
+
"名将怒涛": 53,
|
92 |
+
"帝王光辉": 54,
|
93 |
+
"待兼诗歌剧": 55,
|
94 |
+
"生野狄杜斯": 56,
|
95 |
+
"优秀素质": 57,
|
96 |
+
"双涡轮": 58,
|
97 |
+
"目白多伯": 59,
|
98 |
+
"目白善信": 60,
|
99 |
+
"大拓太阳神": 61,
|
100 |
+
"北部玄驹": 62,
|
101 |
+
"目白阿尔丹": 63,
|
102 |
+
"八重无敌": 64,
|
103 |
+
"里见光钻": 65,
|
104 |
+
"天狼星象征": 66,
|
105 |
+
"樱花桂冠": 67,
|
106 |
+
"成田路": 68,
|
107 |
+
"也文摄辉": 69,
|
108 |
+
"吉兆": 70,
|
109 |
+
"鹤丸刚志": 71,
|
110 |
+
"谷野美酒": 72,
|
111 |
+
"第一红宝石": 73,
|
112 |
+
"目白高峰": 74,
|
113 |
+
"真弓快车": 75,
|
114 |
+
"里见皇冠": 76,
|
115 |
+
"高尚骏逸": 77,
|
116 |
+
"凯斯奇迹": 78,
|
117 |
+
"森林宝穴": 79,
|
118 |
+
"小林力奇": 80,
|
119 |
+
"奇瑞骏": 81,
|
120 |
+
"葛城王牌": 82,
|
121 |
+
"新宇宙": 83,
|
122 |
+
"菱钻奇宝": 84,
|
123 |
+
"望族": 85,
|
124 |
+
"骏川手纲": 86,
|
125 |
+
"秋川弥生": 87,
|
126 |
+
"乙名史悦子": 88,
|
127 |
+
"桐生院葵": 89,
|
128 |
+
"安心泽刺刺美": 90,
|
129 |
+
"达利阿拉伯": 91,
|
130 |
+
"高多芬柏布": 92,
|
131 |
+
"佐岳五月": 93,
|
132 |
+
"胜利奖券": 94,
|
133 |
+
"樱花进王": 95,
|
134 |
+
"东商变革": 96,
|
135 |
+
"微光飞驹": 97,
|
136 |
+
"樱花千代王": 98,
|
137 |
+
"跳舞城": 99,
|
138 |
+
"樫本理子": 100,
|
139 |
+
"明亮圣辉": 101,
|
140 |
+
"拜耶土耳其": 102
|
141 |
+
}
|
142 |
+
},
|
143 |
+
"model": {
|
144 |
+
"use_spk_conditioned_encoder": true,
|
145 |
+
"use_noise_scaled_mas": true,
|
146 |
+
"use_mel_posterior_encoder": false,
|
147 |
+
"use_duration_discriminator": true,
|
148 |
+
"inter_channels": 192,
|
149 |
+
"hidden_channels": 192,
|
150 |
+
"filter_channels": 768,
|
151 |
+
"n_heads": 2,
|
152 |
+
"n_layers": 6,
|
153 |
+
"kernel_size": 3,
|
154 |
+
"p_dropout": 0.1,
|
155 |
+
"resblock": "1",
|
156 |
+
"resblock_kernel_sizes": [
|
157 |
+
3,
|
158 |
+
7,
|
159 |
+
11
|
160 |
+
],
|
161 |
+
"resblock_dilation_sizes": [
|
162 |
+
[
|
163 |
+
1,
|
164 |
+
3,
|
165 |
+
5
|
166 |
+
],
|
167 |
+
[
|
168 |
+
1,
|
169 |
+
3,
|
170 |
+
5
|
171 |
+
],
|
172 |
+
[
|
173 |
+
1,
|
174 |
+
3,
|
175 |
+
5
|
176 |
+
]
|
177 |
+
],
|
178 |
+
"upsample_rates": [
|
179 |
+
8,
|
180 |
+
8,
|
181 |
+
2,
|
182 |
+
2,
|
183 |
+
2
|
184 |
+
],
|
185 |
+
"upsample_initial_channel": 512,
|
186 |
+
"upsample_kernel_sizes": [
|
187 |
+
16,
|
188 |
+
16,
|
189 |
+
8,
|
190 |
+
2,
|
191 |
+
2
|
192 |
+
],
|
193 |
+
"n_layers_q": 3,
|
194 |
+
"use_spectral_norm": false,
|
195 |
+
"gin_channels": 256
|
196 |
+
}
|
197 |
+
}
|
data_utils.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import torch.utils.data
|
5 |
+
from tqdm import tqdm
|
6 |
+
from loguru import logger
|
7 |
+
import commons
|
8 |
+
from mel_processing import spectrogram_torch, mel_spectrogram_torch
|
9 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
10 |
+
from text import cleaned_text_to_sequence, get_bert
|
11 |
+
|
12 |
+
"""Multi speaker version"""
|
13 |
+
|
14 |
+
|
15 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
16 |
+
"""
|
17 |
+
1) loads audio, speaker_id, text pairs
|
18 |
+
2) normalizes text and converts them to sequences of integers
|
19 |
+
3) computes spectrograms from audio files.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, audiopaths_sid_text, hparams):
|
23 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
24 |
+
self.max_wav_value = hparams.max_wav_value
|
25 |
+
self.sampling_rate = hparams.sampling_rate
|
26 |
+
self.filter_length = hparams.filter_length
|
27 |
+
self.hop_length = hparams.hop_length
|
28 |
+
self.win_length = hparams.win_length
|
29 |
+
self.sampling_rate = hparams.sampling_rate
|
30 |
+
self.spk_map = hparams.spk2id
|
31 |
+
self.hparams = hparams
|
32 |
+
|
33 |
+
self.use_mel_spec_posterior = getattr(
|
34 |
+
hparams, "use_mel_posterior_encoder", False
|
35 |
+
)
|
36 |
+
if self.use_mel_spec_posterior:
|
37 |
+
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
38 |
+
|
39 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
40 |
+
|
41 |
+
self.add_blank = hparams.add_blank
|
42 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
43 |
+
self.max_text_len = getattr(hparams, "max_text_len", 300)
|
44 |
+
|
45 |
+
random.seed(1234)
|
46 |
+
random.shuffle(self.audiopaths_sid_text)
|
47 |
+
self._filter()
|
48 |
+
|
49 |
+
def _filter(self):
|
50 |
+
"""
|
51 |
+
Filter text & store spec lengths
|
52 |
+
"""
|
53 |
+
# Store spectrogram lengths for Bucketing
|
54 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
55 |
+
# spec_length = wav_length // hop_length
|
56 |
+
|
57 |
+
audiopaths_sid_text_new = []
|
58 |
+
lengths = []
|
59 |
+
skipped = 0
|
60 |
+
logger.info("Init dataset...")
|
61 |
+
for _id, spk, language, text, phones, tone, word2ph in tqdm(
|
62 |
+
self.audiopaths_sid_text
|
63 |
+
):
|
64 |
+
audiopath = f"{_id}"
|
65 |
+
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
|
66 |
+
phones = phones.split(" ")
|
67 |
+
tone = [int(i) for i in tone.split(" ")]
|
68 |
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
69 |
+
audiopaths_sid_text_new.append(
|
70 |
+
[audiopath, spk, language, text, phones, tone, word2ph]
|
71 |
+
)
|
72 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
73 |
+
else:
|
74 |
+
skipped += 1
|
75 |
+
logger.info(
|
76 |
+
"skipped: "
|
77 |
+
+ str(skipped)
|
78 |
+
+ ", total: "
|
79 |
+
+ str(len(self.audiopaths_sid_text))
|
80 |
+
)
|
81 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
82 |
+
self.lengths = lengths
|
83 |
+
|
84 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
85 |
+
# separate filename, speaker_id and text
|
86 |
+
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
|
87 |
+
|
88 |
+
bert, ja_bert, phones, tone, language = self.get_text(
|
89 |
+
text, word2ph, phones, tone, language, audiopath
|
90 |
+
)
|
91 |
+
|
92 |
+
spec, wav = self.get_audio(audiopath)
|
93 |
+
sid = torch.LongTensor([int(self.spk_map[sid])])
|
94 |
+
return (phones, spec, wav, sid, tone, language, bert, ja_bert)
|
95 |
+
|
96 |
+
def get_audio(self, filename):
|
97 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
98 |
+
if sampling_rate != self.sampling_rate:
|
99 |
+
raise ValueError(
|
100 |
+
"{} {} SR doesn't match target {} SR".format(
|
101 |
+
filename, sampling_rate, self.sampling_rate
|
102 |
+
)
|
103 |
+
)
|
104 |
+
audio_norm = audio / self.max_wav_value
|
105 |
+
audio_norm = audio_norm.unsqueeze(0)
|
106 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
107 |
+
if self.use_mel_spec_posterior:
|
108 |
+
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
109 |
+
try:
|
110 |
+
spec = torch.load(spec_filename)
|
111 |
+
except:
|
112 |
+
if self.use_mel_spec_posterior:
|
113 |
+
spec = mel_spectrogram_torch(
|
114 |
+
audio_norm,
|
115 |
+
self.filter_length,
|
116 |
+
self.n_mel_channels,
|
117 |
+
self.sampling_rate,
|
118 |
+
self.hop_length,
|
119 |
+
self.win_length,
|
120 |
+
self.hparams.mel_fmin,
|
121 |
+
self.hparams.mel_fmax,
|
122 |
+
center=False,
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
spec = spectrogram_torch(
|
126 |
+
audio_norm,
|
127 |
+
self.filter_length,
|
128 |
+
self.sampling_rate,
|
129 |
+
self.hop_length,
|
130 |
+
self.win_length,
|
131 |
+
center=False,
|
132 |
+
)
|
133 |
+
spec = torch.squeeze(spec, 0)
|
134 |
+
torch.save(spec, spec_filename)
|
135 |
+
return spec, audio_norm
|
136 |
+
|
137 |
+
def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
|
138 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
139 |
+
if self.add_blank:
|
140 |
+
phone = commons.intersperse(phone, 0)
|
141 |
+
tone = commons.intersperse(tone, 0)
|
142 |
+
language = commons.intersperse(language, 0)
|
143 |
+
for i in range(len(word2ph)):
|
144 |
+
word2ph[i] = word2ph[i] * 2
|
145 |
+
word2ph[0] += 1
|
146 |
+
bert_path = wav_path.replace(".wav", ".bert.pt")
|
147 |
+
try:
|
148 |
+
bert = torch.load(bert_path)
|
149 |
+
assert bert.shape[-1] == len(phone)
|
150 |
+
except:
|
151 |
+
bert = get_bert(text, word2ph, language_str)
|
152 |
+
torch.save(bert, bert_path)
|
153 |
+
assert bert.shape[-1] == len(phone), phone
|
154 |
+
|
155 |
+
if language_str == "ZH":
|
156 |
+
bert = bert
|
157 |
+
ja_bert = torch.zeros(768, len(phone))
|
158 |
+
elif language_str == "JP":
|
159 |
+
ja_bert = bert
|
160 |
+
bert = torch.zeros(1024, len(phone))
|
161 |
+
else:
|
162 |
+
bert = torch.zeros(1024, len(phone))
|
163 |
+
ja_bert = torch.zeros(768, len(phone))
|
164 |
+
assert bert.shape[-1] == len(phone), (
|
165 |
+
bert.shape,
|
166 |
+
len(phone),
|
167 |
+
sum(word2ph),
|
168 |
+
p1,
|
169 |
+
p2,
|
170 |
+
t1,
|
171 |
+
t2,
|
172 |
+
pold,
|
173 |
+
pold2,
|
174 |
+
word2ph,
|
175 |
+
text,
|
176 |
+
w2pho,
|
177 |
+
)
|
178 |
+
phone = torch.LongTensor(phone)
|
179 |
+
tone = torch.LongTensor(tone)
|
180 |
+
language = torch.LongTensor(language)
|
181 |
+
return bert, ja_bert, phone, tone, language
|
182 |
+
|
183 |
+
def get_sid(self, sid):
|
184 |
+
sid = torch.LongTensor([int(sid)])
|
185 |
+
return sid
|
186 |
+
|
187 |
+
def __getitem__(self, index):
|
188 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
189 |
+
|
190 |
+
def __len__(self):
|
191 |
+
return len(self.audiopaths_sid_text)
|
192 |
+
|
193 |
+
|
194 |
+
class TextAudioSpeakerCollate:
|
195 |
+
"""Zero-pads model inputs and targets"""
|
196 |
+
|
197 |
+
def __init__(self, return_ids=False):
|
198 |
+
self.return_ids = return_ids
|
199 |
+
|
200 |
+
def __call__(self, batch):
|
201 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
202 |
+
PARAMS
|
203 |
+
------
|
204 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
205 |
+
"""
|
206 |
+
# Right zero-pad all one-hot text sequences to max input length
|
207 |
+
_, ids_sorted_decreasing = torch.sort(
|
208 |
+
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
209 |
+
)
|
210 |
+
|
211 |
+
max_text_len = max([len(x[0]) for x in batch])
|
212 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
213 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
214 |
+
|
215 |
+
text_lengths = torch.LongTensor(len(batch))
|
216 |
+
spec_lengths = torch.LongTensor(len(batch))
|
217 |
+
wav_lengths = torch.LongTensor(len(batch))
|
218 |
+
sid = torch.LongTensor(len(batch))
|
219 |
+
|
220 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
221 |
+
tone_padded = torch.LongTensor(len(batch), max_text_len)
|
222 |
+
language_padded = torch.LongTensor(len(batch), max_text_len)
|
223 |
+
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
224 |
+
ja_bert_padded = torch.FloatTensor(len(batch), 768, max_text_len)
|
225 |
+
|
226 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
227 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
228 |
+
text_padded.zero_()
|
229 |
+
tone_padded.zero_()
|
230 |
+
language_padded.zero_()
|
231 |
+
spec_padded.zero_()
|
232 |
+
wav_padded.zero_()
|
233 |
+
bert_padded.zero_()
|
234 |
+
ja_bert_padded.zero_()
|
235 |
+
for i in range(len(ids_sorted_decreasing)):
|
236 |
+
row = batch[ids_sorted_decreasing[i]]
|
237 |
+
|
238 |
+
text = row[0]
|
239 |
+
text_padded[i, : text.size(0)] = text
|
240 |
+
text_lengths[i] = text.size(0)
|
241 |
+
|
242 |
+
spec = row[1]
|
243 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
244 |
+
spec_lengths[i] = spec.size(1)
|
245 |
+
|
246 |
+
wav = row[2]
|
247 |
+
wav_padded[i, :, : wav.size(1)] = wav
|
248 |
+
wav_lengths[i] = wav.size(1)
|
249 |
+
|
250 |
+
sid[i] = row[3]
|
251 |
+
|
252 |
+
tone = row[4]
|
253 |
+
tone_padded[i, : tone.size(0)] = tone
|
254 |
+
|
255 |
+
language = row[5]
|
256 |
+
language_padded[i, : language.size(0)] = language
|
257 |
+
|
258 |
+
bert = row[6]
|
259 |
+
bert_padded[i, :, : bert.size(1)] = bert
|
260 |
+
|
261 |
+
ja_bert = row[7]
|
262 |
+
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
|
263 |
+
|
264 |
+
return (
|
265 |
+
text_padded,
|
266 |
+
text_lengths,
|
267 |
+
spec_padded,
|
268 |
+
spec_lengths,
|
269 |
+
wav_padded,
|
270 |
+
wav_lengths,
|
271 |
+
sid,
|
272 |
+
tone_padded,
|
273 |
+
language_padded,
|
274 |
+
bert_padded,
|
275 |
+
ja_bert_padded,
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
280 |
+
"""
|
281 |
+
Maintain similar input lengths in a batch.
|
282 |
+
Length groups are specified by boundaries.
|
283 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
284 |
+
|
285 |
+
It removes samples which are not included in the boundaries.
|
286 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
287 |
+
"""
|
288 |
+
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
dataset,
|
292 |
+
batch_size,
|
293 |
+
boundaries,
|
294 |
+
num_replicas=None,
|
295 |
+
rank=None,
|
296 |
+
shuffle=True,
|
297 |
+
):
|
298 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
299 |
+
self.lengths = dataset.lengths
|
300 |
+
self.batch_size = batch_size
|
301 |
+
self.boundaries = boundaries
|
302 |
+
|
303 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
304 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
305 |
+
self.num_samples = self.total_size // self.num_replicas
|
306 |
+
|
307 |
+
def _create_buckets(self):
|
308 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
309 |
+
for i in range(len(self.lengths)):
|
310 |
+
length = self.lengths[i]
|
311 |
+
idx_bucket = self._bisect(length)
|
312 |
+
if idx_bucket != -1:
|
313 |
+
buckets[idx_bucket].append(i)
|
314 |
+
|
315 |
+
try:
|
316 |
+
for i in range(len(buckets) - 1, 0, -1):
|
317 |
+
if len(buckets[i]) == 0:
|
318 |
+
buckets.pop(i)
|
319 |
+
self.boundaries.pop(i + 1)
|
320 |
+
assert all(len(bucket) > 0 for bucket in buckets)
|
321 |
+
# When one bucket is not traversed
|
322 |
+
except Exception as e:
|
323 |
+
print("Bucket warning ", e)
|
324 |
+
for i in range(len(buckets) - 1, -1, -1):
|
325 |
+
if len(buckets[i]) == 0:
|
326 |
+
buckets.pop(i)
|
327 |
+
self.boundaries.pop(i + 1)
|
328 |
+
|
329 |
+
num_samples_per_bucket = []
|
330 |
+
for i in range(len(buckets)):
|
331 |
+
len_bucket = len(buckets[i])
|
332 |
+
total_batch_size = self.num_replicas * self.batch_size
|
333 |
+
rem = (
|
334 |
+
total_batch_size - (len_bucket % total_batch_size)
|
335 |
+
) % total_batch_size
|
336 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
337 |
+
return buckets, num_samples_per_bucket
|
338 |
+
|
339 |
+
def __iter__(self):
|
340 |
+
# deterministically shuffle based on epoch
|
341 |
+
g = torch.Generator()
|
342 |
+
g.manual_seed(self.epoch)
|
343 |
+
|
344 |
+
indices = []
|
345 |
+
if self.shuffle:
|
346 |
+
for bucket in self.buckets:
|
347 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
348 |
+
else:
|
349 |
+
for bucket in self.buckets:
|
350 |
+
indices.append(list(range(len(bucket))))
|
351 |
+
|
352 |
+
batches = []
|
353 |
+
for i in range(len(self.buckets)):
|
354 |
+
bucket = self.buckets[i]
|
355 |
+
len_bucket = len(bucket)
|
356 |
+
if len_bucket == 0:
|
357 |
+
continue
|
358 |
+
ids_bucket = indices[i]
|
359 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
360 |
+
|
361 |
+
# add extra samples to make it evenly divisible
|
362 |
+
rem = num_samples_bucket - len_bucket
|
363 |
+
ids_bucket = (
|
364 |
+
ids_bucket
|
365 |
+
+ ids_bucket * (rem // len_bucket)
|
366 |
+
+ ids_bucket[: (rem % len_bucket)]
|
367 |
+
)
|
368 |
+
|
369 |
+
# subsample
|
370 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
371 |
+
|
372 |
+
# batching
|
373 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
374 |
+
batch = [
|
375 |
+
bucket[idx]
|
376 |
+
for idx in ids_bucket[
|
377 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
378 |
+
]
|
379 |
+
]
|
380 |
+
batches.append(batch)
|
381 |
+
|
382 |
+
if self.shuffle:
|
383 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
384 |
+
batches = [batches[i] for i in batch_ids]
|
385 |
+
self.batches = batches
|
386 |
+
|
387 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
388 |
+
return iter(self.batches)
|
389 |
+
|
390 |
+
def _bisect(self, x, lo=0, hi=None):
|
391 |
+
if hi is None:
|
392 |
+
hi = len(self.boundaries) - 1
|
393 |
+
|
394 |
+
if hi > lo:
|
395 |
+
mid = (hi + lo) // 2
|
396 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
397 |
+
return mid
|
398 |
+
elif x <= self.boundaries[mid]:
|
399 |
+
return self._bisect(x, lo, mid)
|
400 |
+
else:
|
401 |
+
return self._bisect(x, mid + 1, hi)
|
402 |
+
else:
|
403 |
+
return -1
|
404 |
+
|
405 |
+
def __len__(self):
|
406 |
+
return self.num_samples // self.batch_size
|
generation_logs.txt
ADDED
@@ -0,0 +1,1267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
吃葡萄不吐葡萄皮,不吃葡萄倒吐葡萄皮。 | 特别周
|
2 |
+
はりきっていこう! | 特别周
|
3 |
+
はりきっていこう! | 特别周
|
4 |
+
はりきっていこう! | 富士奇迹
|
5 |
+
はりきっていこう! | 大和赤骥
|
6 |
+
はりきっていこう! | 爱丽数码
|
7 |
+
はりきっていこうや! | 稻荷一
|
8 |
+
はりきっていくや! | 真弓快车
|
9 |
+
はりきっていこう! | 气槽
|
10 |
+
勃起、しちゃいましたね? | 气槽
|
11 |
+
勃起、しちゃいましたね? | 星云天空
|
12 |
+
はりきっていこう! | 特别周
|
13 |
+
勃起、しちゃいましたね?
|
14 |
+
私が処理してあげましょうか? | 星云天空
|
15 |
+
はいっ…鍵、かけちゃった♥️
|
16 |
+
|
17 |
+
これで誰も入ってこれないし、君も逃げられないね…♥️
|
18 |
+
|
19 |
+
…もっとも、夜の公園の男子トイレだからめったに人も来ないんだけど…
|
20 |
+
|
21 |
+
急にこんなことしてごめんね…ん♥️
|
22 |
+
|
23 |
+
…ちゅ♥️
|
24 |
+
|
25 |
+
…お姉さん、君のことがすきなんだぁ…♥️
|
26 |
+
|
27 |
+
ずっと見てたよ♥️毎朝ここの公園を通って大学にいくところ♥️
|
28 |
+
|
29 |
+
時々私が「おはよう」って挨拶すると、顔赤くしちゃってさ…
|
30 |
+
|
31 |
+
かわいいなぁ…♥️食べちゃいたいくらいかわいいって思ってたよ♥️
|
32 |
+
|
33 |
+
君が朝と同じようにここの公園を通って帰ってくるって知ってたから…
|
34 |
+
|
35 |
+
強引に手を縛って、男子トイレに連れ込んじゃった♥️ | 星云天空
|
36 |
+
Hello world | 特别周
|
37 |
+
はいっ…鍵、かけちゃった♥️
|
38 |
+
|
39 |
+
これで誰も入ってこれないし、君も逃げられないね…♥️
|
40 |
+
|
41 |
+
…もっとも、夜の公園の男子トイレだからめったに人も来ないんだけど…
|
42 |
+
|
43 |
+
急にこんなことしてごめんね…ん♥️
|
44 |
+
|
45 |
+
…ちゅ♥️
|
46 |
+
|
47 |
+
…お姉さん、君のことがすきなんだぁ…♥️
|
48 |
+
|
49 |
+
ずっと見てたよ♥️毎朝ここの公園を通って大学にいくところ♥️
|
50 |
+
|
51 |
+
時々私が「おはよう」って挨拶すると、顔赤くしちゃってさ…
|
52 |
+
|
53 |
+
かわいいなぁ…♥️食べちゃいたいくらいかわいいって思ってたよ♥️
|
54 |
+
|
55 |
+
君が朝と同じようにここの公園を通って帰ってくるって知ってたから…
|
56 |
+
|
57 |
+
強引に手を縛って、男子トイレに連れ込んじゃった♥️ | 里见光钻
|
58 |
+
はいっ?鍵、かけちゃった♥️
|
59 |
+
|
60 |
+
これで誰も入ってこれないし、君も逃げられないね?♥️
|
61 |
+
|
62 |
+
…もっとも、夜の公園の男子トイレだからめったに人も来ないんだけど?
|
63 |
+
|
64 |
+
急にこんなことしてごめんね?ん♥️
|
65 |
+
|
66 |
+
…ちゅ♥️
|
67 |
+
|
68 |
+
…お姉さん、君のことがすきなんだぁ?♥️
|
69 |
+
|
70 |
+
ずっと見てたよ♥️毎朝ここの公園を通って大学にいくところ♥️
|
71 |
+
|
72 |
+
時々私が「おはよう」って挨拶すると、顔赤くしちゃってさ?
|
73 |
+
|
74 |
+
かわいいなぁ?♥️食べちゃいたいくらいかわいいって思ってたよ♥️
|
75 |
+
|
76 |
+
君が朝と同じようにここの公園を通って帰ってくるって知ってたから?
|
77 |
+
|
78 |
+
強引に手を縛って、男子トイレに連れ込んじゃった♥️ | 里见光钻
|
79 |
+
はいっ?鍵、かけちゃった!
|
80 |
+
|
81 |
+
これで誰も入ってこれないし、君も逃げられないね?!
|
82 |
+
|
83 |
+
…もっとも、夜の公園の男子トイレだからめったに人も来ないんだけど?
|
84 |
+
|
85 |
+
急にこんなことしてごめんね?ん!
|
86 |
+
|
87 |
+
…ちゅ!
|
88 |
+
|
89 |
+
…お姉さん、君のことがすきなんだぁ?!
|
90 |
+
|
91 |
+
ずっと見てたよ!毎朝ここの公園を通って大学にいくところ!
|
92 |
+
|
93 |
+
時々私が「おはよう」って挨拶すると、顔赤くしちゃってさ?
|
94 |
+
|
95 |
+
かわいいなぁ?!食べちゃいたいくらいかわいいって思ってたよ!
|
96 |
+
|
97 |
+
君が朝と同じようにここの公園を通って帰ってくるって知ってたから?
|
98 |
+
|
99 |
+
強引に手を縛って、男子トイレに連れ込んじゃった! | 里见光钻
|
100 |
+
はいっ?鍵、かけちゃった!
|
101 |
+
|
102 |
+
これで誰も入ってこれないし、きみも逃げられないね?!
|
103 |
+
|
104 |
+
!もっとも、夜の公園の男子トイレだからめったに人も来ないんだけど?
|
105 |
+
|
106 |
+
急にこんなことしてごめんね?ん!
|
107 |
+
|
108 |
+
!ちゅ!
|
109 |
+
|
110 |
+
!おねえさん、きみのことがすきなんだぁ?!
|
111 |
+
|
112 |
+
ずっと見てたよ!毎朝ここの公園を通って大学にいくところ!
|
113 |
+
|
114 |
+
時々私が「おはよう」って挨拶すると、顔赤くしちゃってさ?
|
115 |
+
|
116 |
+
かわいいなぁ?!食べちゃいたいくらいかわいいって思ってたよ!
|
117 |
+
|
118 |
+
きみが朝と同じようにここの公園を通って帰ってくるって知ってたから?
|
119 |
+
|
120 |
+
強引に手を縛って、男子トイレに連れ込んじゃった! | 里见光钻
|
121 |
+
迫る熱に押されて | 特别周
|
122 |
+
はいっ!鍵、かけちゃった!
|
123 |
+
|
124 |
+
これで誰も入ってこれないし、きみも逃げられないね?!
|
125 |
+
|
126 |
+
!もっとも、夜の公園の男子トイレだからめったに人も来ないんだけど��
|
127 |
+
|
128 |
+
急にこんなことしてごめんね?ん!
|
129 |
+
|
130 |
+
!ちゅ!
|
131 |
+
|
132 |
+
!おねえさん、きみのことがすきなんだぁ?!
|
133 |
+
|
134 |
+
ずっと見てたよ!毎朝ここの公園を通って大学にいくところ!
|
135 |
+
|
136 |
+
時々私が「おはよう」って挨拶すると、顔赤くしちゃってさ?
|
137 |
+
|
138 |
+
かわいいなぁ?!食べちゃいたいくらいかわいいって思ってたよ!
|
139 |
+
|
140 |
+
きみが朝と同じようにここの公園を通って帰ってくるって知ってたから?
|
141 |
+
|
142 |
+
強引に手を縛って、男子トイレに連れ込んじゃった! | 里见光钻
|
143 |
+
はいっ!鍵、かけちゃった!
|
144 |
+
|
145 |
+
これで誰も入ってこれないし、きみも逃げられないね?!
|
146 |
+
|
147 |
+
!もっとも、よるの公園の男子トイレだからめったに人も来ないんだけど?
|
148 |
+
|
149 |
+
急にこんなことしてごめんね?ん!
|
150 |
+
|
151 |
+
ちゅ!
|
152 |
+
|
153 |
+
おねえさん、きみのことがすきなんだぁ?!
|
154 |
+
|
155 |
+
ずっと見てたよ!毎朝ここの公園を通って大学にいくところ!
|
156 |
+
|
157 |
+
ときどき私が「おはよう」って挨拶すると、顔赤くしちゃってさ?
|
158 |
+
|
159 |
+
かわいいなぁ?!食べちゃいたいくらいかわいいって思ってたよ!
|
160 |
+
|
161 |
+
きみが朝と同じようにここの公園を通って帰ってくるって知ってたから?
|
162 |
+
|
163 |
+
強引に手を縛って、男子トイレに連れ込んじゃった! | 超级小海湾
|
164 |
+
|
165 |
+
ウチとやろうや! | 超级小海湾
|
166 |
+
|
167 |
+
ウチとやろうや! | 玉藻十字
|
168 |
+
|
169 |
+
ウチ!とやろうや! | 玉藻十字
|
170 |
+
ねえ、聞いて。素敵な、恋を、してるの。 | 玉藻十字
|
171 |
+
ねえ聞いて。素敵な恋をしてるの。 | 玉藻十字
|
172 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」 | 真机伶
|
173 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……?」 | 真机伶
|
174 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……?」 | 目白阿尔丹
|
175 |
+
孙家天下孙家兵,成就千秋万世名 | 草上飞
|
176 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」 | 目白阿尔丹
|
177 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
178 |
+
|
179 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
180 |
+
|
181 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
182 |
+
|
183 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」 | 目白阿尔丹
|
184 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
185 |
+
|
186 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
187 |
+
|
188 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
189 |
+
|
190 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」
|
191 |
+
|
192 |
+
「素敵です……そんなに我慢が出来ないのですね、可愛いトレーナーさん……♡」
|
193 |
+
|
194 |
+
「まあ……もうこんなに硬くして……♡」
|
195 |
+
|
196 |
+
「ふふっ、そんなにがっついて……♡ 大丈夫です、すべてわかっていますから……♡」
|
197 |
+
|
198 |
+
「貴方には、至上の幸せを感じてもらいたいですから……♡ そのためにはまず……邪魔なものを取り払ってしまわないと……♡」 | 目白阿尔丹
|
199 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
200 |
+
|
201 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
202 |
+
|
203 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
204 |
+
|
205 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」
|
206 |
+
|
207 |
+
「素敵です……そんなに我慢が出来ないのですね、可愛いトレーナーさん……♡」
|
208 |
+
|
209 |
+
「まあ……もうこんなに硬くして……♡」
|
210 |
+
|
211 |
+
「ふふっ、そんなにがっついて……♡ 大丈夫です、すべてわかっていますから……♡」
|
212 |
+
|
213 |
+
「貴方には、至上の幸せを感じてもらいたいですから……♡ そのためにはまず……邪魔なものを取り払ってしまわないと……♡」
|
214 |
+
|
215 |
+
「トレーナーさんの大好きな、私のおっぱい……貴方の手で育てられた、自慢のおっぱいですよ……♡」 | 目白阿尔丹
|
216 |
+
敵将討ち取ったり | 草上飞
|
217 |
+
敵将,討ち取ったり | 草上飞
|
218 |
+
敵将,討ち取ったり | 草上飞
|
219 |
+
敵将,討ち取ったり | 目白阿尔丹
|
220 |
+
敵将,討ち取ったり | 草上飞
|
221 |
+
敵将,討ち取ったり | 草上飞
|
222 |
+
敵将,討ち取ったり! | 草上飞
|
223 |
+
敵将,討ち取ったり | 草上飞
|
224 |
+
敵将,討ち取ったり | 草上飞
|
225 |
+
敵将,討ち取っ���り | 草上飞
|
226 |
+
私のカードの中にカードがある限り、私はいつも私のデッキを信じている。 | 特别周
|
227 |
+
私のカードの中にカードがある限り、私はいつも私のデッキを信じている。 | 特别周
|
228 |
+
私のカードの中にカードがある限り、私はいつも私のデッキを信じている。 | 特别周
|
229 |
+
私のカードの中にカードがある限り、私はいつも私のデッキを信じている。 | 特别周
|
230 |
+
鳴らない言葉をもう一度描いて
|
231 |
+
| 特别周
|
232 |
+
鳴らない言葉をもう一度描いて
|
233 |
+
赤色に染まる時間を置き忘れ去れば
|
234 |
+
哀しい世界はもう二度となくて
|
235 |
+
荒れた陸地が こぼれ落ちていく 一筋の光へ
|
236 |
+
| 特别周
|
237 |
+
散れ、千本桜 | 特别周
|
238 |
+
散れ、千本桜 | 樱花桂冠
|
239 |
+
砕けろ、镜花水月 | 成田白仁
|
240 |
+
砕けろ、镜花水月 | 成田白仁
|
241 |
+
散れ、千本桜 | 成田白仁
|
242 |
+
私の名は「吉良吉影」、年齢33歳。自宅は杜王町北東部の別荘地帯にあり。結婚はしていない。
|
243 |
+
|
244 |
+
仕事は「カメューチューン店」の会社員で、毎日遅くでも夜8時までには帰宅する。タバコは吸わない、酒はたしなむ程度。夜11時には床につき必ず8時間は睡眠をとるようにしている。寝る前にあたたかいミルクを飲み、20分ほどのストレッチで体をほぐしてから、床につくとほんとど朝まで熟睡さ。
|
245 |
+
|
246 |
+
赤ん坊のように疲労やストレス残さずに朝目をさませるんだ。健康診断でも異常なしと言われたよ。
|
247 |
+
|
248 |
+
わたしは常に「心の平穏」をお願って生きてる人間ということ説明しているのだよ。
|
249 |
+
|
250 |
+
「勝ち負け」にこだわったり頭をかかえるような「トラブル」とか夜も眠れないといった「敵」もつくらないというのが、わたしの社会に対する姿勢であり、それが自分の幸福だということを知っている。
|
251 |
+
|
252 |
+
もっとも闘ったとしてもわたしは誰にも負けんがね。 | 成田白仁
|
253 |
+
私の名は「吉良吉影」、年齢33歳。自宅は杜王町北東部の別荘地帯にあり。結婚はしていない。
|
254 |
+
| 成田白仁
|
255 |
+
|
256 |
+
仕事は「カメューチューン店」の会社員で、毎日遅くでも夜8時までには帰宅する。タバコは吸わない、酒はたしなむ程度。夜11時には床につき必ず8時間は睡眠をとるようにしている。寝る前にあたた かいミルクを飲み、20分ほどのストレッチで体をほぐしてから、床につくとほんとど朝まで熟睡さ。 | 草上飞
|
257 |
+
仕事は「カメューチューン店」の会社員で、毎日遅くでも夜8時までには帰宅する。タバコは吸わない、酒はたしなむ程度。夜11時には床につき必ず8時間は睡眠をとるようにしている。寝る前にあたた かいミルクを飲み、20分ほどのストレッチで体をほぐしてから、床につくとほんとど朝まで熟睡さ。 | 草上飞
|
258 |
+
仕事はカメューチューン店の会社員で、毎日遅くでも夜8時までには帰宅する。タバコは吸わない、酒はたしなむ程度。夜11時には床につき必ず8時間は睡眠をとるようにしている。寝る前にあたた かいミルクを飲み、20分ほどのストレッチで体をほぐしてから、床につくとほんとど朝まで熟睡さ。 | 草上飞
|
259 |
+
=毎日遅くでも夜8時までには帰宅する。タバコは吸わない、酒はたしなむ程度。夜11時には床につき必ず8時間は睡眠をとるようにしている。寝る前にあたた かいミルクを飲み、20分ほどのストレッチで体をほぐしてから、床につくとほんとど朝まで熟睡さ。 | 草上飞
|
260 |
+
仕事はカメューチューン店の会社員で | 草上飞
|
261 |
+
仕事は店の会社員で | 草上飞
|
262 |
+
仕事はカメューチューン店の会社員で | 草上飞
|
263 |
+
カメューチューン | 草上飞
|
264 |
+
|
265 |
+
かみゅーちゅうん
|
266 |
+
| 草上飞
|
267 |
+
カメューチューン
|
268 |
+
かみゅーちゅうん
|
269 |
+
| 草上飞
|
270 |
+
はりきっていこう! | 特别周
|
271 |
+
はりきっていこう! | 东海帝皇
|
272 |
+
はりきっていこう! | 雪中美人
|
273 |
+
ユ | 草上飞
|
274 |
+
ュ
|
275 |
+
| 草上飞
|
276 |
+
はりきっていこう! | 东海帝皇
|
277 |
+
ュ | 草上飞
|
278 |
+
なんでハルヒ影やったの! | 草上飞
|
279 |
+
はりきっていこう! | 米浴
|
280 |
+
なんでハルヒ影やったの!!! | 草上飞
|
281 |
+
なんでハルヒ影やったの!!! | 东海帝皇
|
282 |
+
なんでハルヒ影やったの??!!! | 东海帝皇
|
283 |
+
おちんちんでっけー! | 东海帝皇
|
284 |
+
おにいさま | 米浴
|
285 |
+
ミュ | 东海帝皇
|
286 |
+
カミュ | 东海帝皇
|
287 |
+
おにいさま、大好きですっ! | 米浴
|
288 |
+
カミュチョウ | 东海帝皇
|
289 |
+
おにいさま、大好きですっ! | 爱慕织姬
|
290 |
+
カメューチューン | 东海帝皇
|
291 |
+
カメューチューン | 东海帝皇
|
292 |
+
おにいさま、大好きですっ! | 骏川手纲
|
293 |
+
カメュチューン | 东海帝皇
|
294 |
+
カメューン | 东海帝皇
|
295 |
+
カメュ | 东海帝皇
|
296 |
+
原神,启动! | 特别周
|
297 |
+
原神,启动! | 东海帝皇
|
298 |
+
げんしん、きどう! | 东海帝皇
|
299 |
+
げんしん、きどう! | 特别周
|
300 |
+
げんしん、きどう! | 东海帝皇
|
301 |
+
げんしん、きどう! | 无声铃鹿
|
302 |
+
げんしん、きどう! | 大和赤骥
|
303 |
+
げんしん、きどう! | 爱慕织姬
|
304 |
+
げんしん、きどう! | 东海帝皇
|
305 |
+
!!なんで春日影やったの! | 东海帝皇
|
306 |
+
!!なんでハルヒ影やったの! | 东海帝皇
|
307 |
+
はりきっていこう! | 特别周
|
308 |
+
はりきっていこう! | 特别周
|
309 |
+
素晴らしい! | 特别周
|
310 |
+
素晴らしい! | 特别周
|
311 |
+
素晴らしい! | 特别周
|
312 |
+
素晴らしい! | 特别周
|
313 |
+
素晴らしい! | 特别周
|
314 |
+
失敗したので作り直す | 特别周
|
315 |
+
失敗したので作り直す | 特别周
|
316 |
+
失敗したので作り直す | 特别周
|
317 |
+
失敗したので作り直す | 无声铃鹿
|
318 |
+
失敗したので作り直す | 空中神宫
|
319 |
+
失敗したので作り直す | 荒漠英雄
|
320 |
+
失敗したので作り直す | 目白阿尔丹
|
321 |
+
そのころ私は不思議なこころもちで、毎朝ぼんやりその山を眺めていたのです。それは私の街から五里ばかり隔った医王山という山です。
|
322 |
+
|
323 |
+
|
324 |
+
|
325 |
+
春は、いつの間にか紫ぐんだ優しい色でつつまれ、斑ら牛のように、残雪をところどころに染め、そしていつまでも静かに聳えているのです。
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
その山の前に、戸室というのが一つ聳えていましたが、それよりも一層紫いろをして、一層静かになって見えました。 | 目白阿尔丹
|
330 |
+
そのころ私は不思議なこころもちで、毎朝ぼんやりその山を眺めていたのです。それは私の街から五里ばかり隔った医王山という山です。
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
春は、いつの間にか紫ぐんだ優しい色でつつまれ、斑ら牛のように、残雪をところどころに染め、そしていつまでも静かに聳えているのです。
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
その山の前に、戸室というのが一つ聳えていましたが、それよりも一層紫いろをして、一層静かになって見えました。 | 鹤丸刚志
|
339 |
+
失敗したので作り直す | 东海帝皇
|
340 |
+
素晴らしい! | 东海帝皇
|
341 |
+
そのころ私は不思議なこころもちで、毎朝ぼんやりその山を眺めていたのです。それは私の街から五里ばかり隔った医王山という山です。
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
春は、いつの間にか紫ぐんだ優しい色でつつまれ、斑ら牛のように、残雪をところどころに染め、そしていつまでも静かに聳えているのです。
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
その山の前に、戸室というのが一つ聳えていましたが、それよりも一層紫いろをして、一層静かになって見えました。 | 小栗帽
|
350 |
+
はりきっていこう! | 特别周
|
351 |
+
はりきっていこう! | 东海帝皇
|
352 |
+
はりきっていこう! | 黄金船
|
353 |
+
はりきっていこう! | 神鹰
|
354 |
+
はりきっていこう! | 特别周
|
355 |
+
はりきっていこう! | 丸善斯基
|
356 |
+
はりきっていこう! | 爱丽数码
|
357 |
+
はりきっていこう! | 爱丽数码
|
358 |
+
はりきっていこう! | 爱丽数码
|
359 |
+
はりきっていこう! | 爱丽数码
|
360 |
+
はりきっていこう! | 摩耶重炮
|
361 |
+
はりきっていこう! | 目白赖恩
|
362 |
+
はりきっていこう! | 空中神宫
|
363 |
+
はりきっていこう! | 北部玄驹
|
364 |
+
はりきっていこう! | 北部玄驹
|
365 |
+
はりきっていこう! | 里见光钻
|
366 |
+
そのころ私は不思議なこころもちで、毎朝ぼんやりその山を眺めていたのです。それは私の街から五里ばかり隔った医王山という山です。
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
春は、いつの間にか紫ぐんだ優しい色でつつまれ、斑ら牛のように、残雪をところどころに染め、そしていつまでも静かに聳えているのです。
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
その山の前に、戸室というのが一つ聳えていましたが、それよりも一層紫いろをして、一層静かになって見えました。 | 里见光钻
|
375 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
376 |
+
|
377 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
378 |
+
|
379 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
380 |
+
|
381 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」 | 目白阿尔丹
|
382 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
383 |
+
|
384 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
385 |
+
|
386 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
387 |
+
|
388 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」
|
389 |
+
|
390 |
+
「素敵です……そん��に我慢が出来ないのですね、可愛いトレーナーさん……♡」
|
391 |
+
|
392 |
+
「まあ……もうこんなに硬くして……♡」
|
393 |
+
|
394 |
+
「ふふっ、そんなにがっついて……♡ 大丈夫です、すべてわかっていますから……♡」
|
395 |
+
|
396 |
+
「貴方には、至上の幸せを感じてもらいたいですから……♡ そのためにはまず……邪魔なものを取り払ってしまわないと……♡」 | 目白阿尔丹
|
397 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
398 |
+
|
399 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
400 |
+
|
401 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
402 |
+
|
403 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」
|
404 |
+
|
405 |
+
「素敵です……そんなに我慢が出来ないのですね、可愛いトレーナーさん……♡」
|
406 |
+
|
407 |
+
「まあ……もうこんなに硬くして……♡」
|
408 |
+
|
409 |
+
「ふふっ、そんなにがっついて……♡ 大丈夫です、すべてわかっていますから……♡」
|
410 |
+
|
411 |
+
「貴方には、至上の幸せを感じてもらいたいですから……♡ そのためにはまず……邪魔なものを取り払ってしまわないと……♡」
|
412 |
+
|
413 |
+
「トレーナーさんの大好きな、私のおっぱい……貴方の手で育てられた、自慢のおっぱいですよ……♡」 | 里见光钻
|
414 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
415 |
+
|
416 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
417 |
+
|
418 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
419 |
+
|
420 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」
|
421 |
+
|
422 |
+
「素敵です……そんなに我慢が出来ないのですね、可愛いトレーナーさん……♡」
|
423 |
+
|
424 |
+
「まあ……もうこんなに硬くして……♡」
|
425 |
+
|
426 |
+
「ふふっ、そんなにがっついて……♡ 大丈夫です、すべてわかっていますから……♡」
|
427 |
+
|
428 |
+
「貴方には、至上の幸せを感じてもらいたいですから……♡ そのためにはまず……邪魔なものを取り払ってしまわないと……♡」 | 目白阿尔丹
|
429 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
430 |
+
|
431 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
432 |
+
|
433 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
434 |
+
|
435 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」
|
436 |
+
|
437 |
+
「素敵です……そんなに我慢が出来ないのですね、可愛いトレーナーさん……♡」
|
438 |
+
|
439 |
+
「まあ……もうこんなに硬くして……♡」
|
440 |
+
|
441 |
+
「ふふっ、そんなにがっついて……♡ 大丈夫です、すべてわかっていますから……♡」
|
442 |
+
|
443 |
+
「貴方には、至上の幸せを感じてもらいたいですから……♡ そのためにはまず……邪魔なものを取り払ってしまわないと……♡」
|
444 |
+
|
445 |
+
「トレーナーさんの大好きな、私のおっぱい……貴方の手で育てられた、自慢のおっぱいですよ……♡」 | 里见光钻
|
446 |
+
|
447 |
+
「ふふっ、トレーナーさん。待ちきれないのはお互い様、ですよね……♡」
|
448 |
+
|
449 |
+
「その熱い視線だけでわかってしまいます……貴方がどれだけ私を求めているのか……♡」
|
450 |
+
|
451 |
+
「さあ、遠慮なさらず。貴方のお好きなように……私を味わい尽くしてください……♡」
|
452 |
+
|
453 |
+
「あら……ふふ、お顔がすっかり蕩けてしまって……♡」
|
454 |
+
|
455 |
+
「素敵です……そんなに我慢が出来ないのですね、可愛いトレーナーさん……♡」
|
456 |
+
|
457 |
+
「まあ……もうこんなに硬くして……♡」
|
458 |
+
|
459 |
+
「ふふっ、そんなにがっついて……♡ 大丈夫です、すべてわかっていますから……♡」
|
460 |
+
|
461 |
+
「貴方には、至上の幸せを感じてもらいたいですから……♡ そのためにはまず……邪魔なものを取り払ってしまわないと……♡」
|
462 |
+
|
463 |
+
「トレーナーさんの大好きな、私のおっぱい……貴方の手で育てられた、自慢のおっぱいですよ……♡」 | 里见光钻
|
464 |
+
「日本語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、日本語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 里见光钻
|
465 |
+
「日本語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、日本語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 目白多伯
|
466 |
+
「日ほん語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、日ほん語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 目白多伯
|
467 |
+
「にほん語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、にほん語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 目白多伯
|
468 |
+
「にほん語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、にほん語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 北部玄驹
|
469 |
+
「にほん語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、にほん語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 星云天空
|
470 |
+
「にほん語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、にほん語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 玉藻十字
|
471 |
+
「にほん語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、にほん語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 大和赤骥
|
472 |
+
「にほん語の文法の基礎を簡単におさらいしたい」「上手な文章を書けるようになりたい」という方は多いのではないでしょうか。小学校や中学校で習ったとはいえ、大部分を忘れてしまった人が大半ではないか思います。そこでこの記事では、にほん語の文法で最初に理解しておきたい基礎知識を分かりやすく解説します。 | 米浴
|
473 |
+
トレーナー『やっと休日だ…』
|
474 |
+
|
475 |
+
どれだけこの日を待ち望んでいたことか
|
476 |
+
最近は仕事が忙しくて、ゆっくりできる時間がなかったこともあり…
|
477 |
+
|
478 |
+
トレーナー『最近は抜いてなかったからな…』
|
479 |
+
そろぴょいする暇もなく、性欲は溜まり続けていた
|
480 |
+
|
481 |
+
|
482 |
+
しかし、何より性欲が溜まる原因は
|
483 |
+
担当ウマ娘であるカレンチャンだ
|
484 |
+
|
485 |
+
近頃はスキンシップが増えて、
|
486 |
+
体操服姿で抱きつかれた時には危うく理性が飛んでしまうところだった…
|
487 |
+
|
488 |
+
だがしかし、彼女との関係はあくまでトレーナーと教え子
|
489 |
+
|
490 |
+
手を出すわけにはいかない | 真机伶
|
491 |
+
『は〜いっ!カレンチャンです♪』
|
492 |
+
|
493 |
+
| 真机伶
|
494 |
+
『はーいっ!カレンチャンです♪』
|
495 |
+
|
496 |
+
| 真机伶
|
497 |
+
『はーーいっ!カレンチャンです♪』
|
498 |
+
|
499 |
+
| 真机伶
|
500 |
+
『はーーいっ!カレンチャンです!』
|
501 |
+
|
502 |
+
| 真机伶
|
503 |
+
『おはよう、お兄ちゃん…⁉︎⁉』 | 真机伶
|
504 |
+
『おはよう、お兄ちゃん……うんん?? | 真机伶
|
505 |
+
『おはよう、お兄ちゃん……うんん??!!!! | 真机伶
|
506 |
+
『お兄ちゃん、
|
507 |
+
溜まってるんだよね…?♡』 | 真机伶
|
508 |
+
『お兄ちゃん、
|
509 |
+
溜まってるんだよね…?♡』 | 西野花
|
510 |
+
『お兄ちゃん、
|
511 |
+
溜まってるんだよね…?♡』 | 奇瑞骏
|
512 |
+
はりきっていこう! | 无声铃鹿
|
513 |
+
『もう一回だけ聞くね♡お兄ちゃ���、溜まってるんだよね…?♡』 | 丸善斯基
|
514 |
+
『もう一回だけ聞くね?お兄ちゃん、溜まってるんだよね…?』 | 丸善斯基
|
515 |
+
『もう一回だけ聞くね?お兄ちゃん、溜まってるんだよね…?』 | 特别周
|
516 |
+
『もう一回だけ聞くね?お兄ちゃん、溜まってるんだよね…?』 | 特别周
|
517 |
+
『もう一回だけ聞くね?お兄ちゃん、溜まってるんだよね…?』 | 特别周
|
518 |
+
「はい!トレーナーさんにもじっくり見ていただきたくて!いかがでしょう?」 | 里见光钻
|
519 |
+
「えへへ,ありがとうございます」 | 里见光钻
|
520 |
+
「いえ、座ったままで構いませんよ」 | 里见光钻
|
521 |
+
「私が机の下に潜りますので♡」 | 里见光钻
|
522 |
+
「はい。上のトレーナーさんはお忙しいようなので、下のトレーナーさんにも感想を聞いてみようかと」 | 里见光钻
|
523 |
+
「はい。上のトレーナーさんはお忙しいようなので、したのトレーナーさんにも感想を聞いてみようかと」 | 里见光钻
|
524 |
+
「はい。上のトレーナーさんはお忙しいようなので、したのトレーナーさんにも感想を聞いてみようかと」 | 里见光钻
|
525 |
+
「はい!上のトレーナーさんはお忙しいようなので、したのトレーナーさんにも感想を聞いてみようかと」 | 里见光钻
|
526 |
+
「ふむふむ…あれ?元気がないですね。お疲れですかトレーナーさん?」 | 里见光钻
|
527 |
+
「私の勝負服姿を見ても、ですか?」 | 里见光钻
|
528 |
+
「うーん…そうですか。そうですよね。トレーナーさんは大人ですもんね」 | 里见光钻
|
529 |
+
「大丈夫です!勝負服の袖の中に隠れてますからトレーナーさんにも私にも見えません!見えないなら出していないのと同じです!」 | 里见光钻
|
530 |
+
「…ふーん、分かりました。トレーナーさんが反応してくれない以上、私もこれ以上するのは申し訳ないですからね」 | 里见光钻
|
531 |
+
「だから大きくしちゃダメですよ♡私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みますけど大きくしちゃダメです♡だって大きくしたら『つづき♡』されちゃいますからね♡トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね♡」 | 里见光钻
|
532 |
+
「だから大きくしちゃダメですよ!私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みますけど大きくしちゃダメです!だって大きくしたら『つづき!』されちゃいますからね!トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね♡」 | 里见光钻
|
533 |
+
「だから大きくしちゃダメですよ!私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みますけど,大きくしちゃダメです!だって大きくしたら『つづき!』されちゃいますからね!トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね?」 | 里见光钻
|
534 |
+
「だから大きくしちゃダメですよ!私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みますけど,大きくしちゃダメです!だって大きくしたら『つづき!』されちゃいますからね!トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね?」 | 里见光钻
|
535 |
+
「だから大きくしちゃダメですよ!私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みますけど,大きくしちゃダメです!!だって大きくしたら『つづき!』されちゃいますからね!トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね?」 | 里见光钻
|
536 |
+
「だから大きくしちゃダメですよ!私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みますけど,大きくしちゃダメです!!だって大きくしたら『つづき!』されちゃいますからね!トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね?」 | 里见光钻
|
537 |
+
「だから大きくしちゃダメですよ!私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みますけど,大きくしちゃダメです!!だって大きくしたら『つづき!』されちゃいますからね!トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね?」 | 里见光钻
|
538 |
+
「だから大きくしちゃダメですよ!私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みます��ど,大きくしちゃダメです!!だって大きくしたら『つづき!』されちゃいますからね!トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね?」 | 里见光钻
|
539 |
+
「だから大きくしちゃダメですよ!私は…いえ、ダイヤはこうやって両手でトレーナーさんのおちんちんを優しく包みますけど,大きくしちゃダメです!!だって大きくしたら『つづき!』されちゃいますからね!トレーナーさんは大人だから子供のダイヤ相手に大きくしたりなんかしませんよね?」 | 里见光钻
|
540 |
+
あなたとサトノダイヤモンドの三年が始まります! | 里见光钻
|
541 |
+
あなたとサトノダイヤモンドの三年が始まります! | 里见光钻
|
542 |
+
あなたとサトノダイヤモンドの三年が始まります! | 里见光钻
|
543 |
+
あなたとサトノダイヤモンドの三年が始まります! | 里见光钻
|
544 |
+
あなたとサトノダイヤモンドの三年が始まります! | 里见光钻
|
545 |
+
あなたとサトノダイヤモンドの三年が始まります! | 里见光钻
|
546 |
+
楊さんは楊さんが拾った巻物を拾い、楊さんが拾った巻物は小さい。 | 里见光钻
|
547 |
+
あなたとサトノダイヤモンドの三年間が始まります! | 里见光钻
|
548 |
+
あなたとサトノダイヤモンドの三年間が始まります! | 里见光钻
|
549 |
+
はりきっていこう! | 大树快车
|
550 |
+
はりきっていこう! | 鲁道夫象征
|
551 |
+
朝起きて、自分の体に妙な熱がこもっているのに気づいた。
|
552 |
+
目を開いて見慣れた自室を眺める。
|
553 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
554 |
+
「あー、またこの時期ですか……」
|
555 |
+
アタシは唸った。
|
556 |
+
いつもの薬を飲んでおかないと。
|
557 |
+
|
558 |
+
|
559 |
+
|
560 |
+
ウマ娘は周期的に、動物で言う発情に近い状態になる。
|
561 |
+
発情と言っても獣のようなものじゃない。ちょっと感覚が鋭敏になったり、感情の起伏が激しくなったり。
|
562 |
+
体がうまく動かせなくなったり。
|
563 |
+
個人差があって、アタシは……結構重めの方だった。 | 优秀素质
|
564 |
+
朝起きて、自分の体に妙な熱がこもっているのに気づいた。
|
565 |
+
目を開いて見慣れた自室を眺める。
|
566 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
567 |
+
「あー、またこの時期ですか……」
|
568 |
+
アタシは唸った。
|
569 |
+
いつもの薬を飲んでおかないと。
|
570 |
+
|
571 |
+
|
572 |
+
|
573 |
+
ウマ娘は周期的に、動物で言う発情に近い状態になる。
|
574 |
+
発情と言っても獣のようなものじゃない。ちょっと感覚が鋭敏になったり、感情の起伏が激しくなったり。
|
575 |
+
体がうまく動かせなくなったり。
|
576 |
+
個人差があって、アタシは……結構重めの方だった。 | 优秀素质
|
577 |
+
朝起きて、自分の体に妙な熱がこもっているのに気づいた。
|
578 |
+
目を開いて見慣れた自室を眺める。
|
579 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
580 |
+
「あー、またこの時期ですか……」
|
581 |
+
アタシは唸った。
|
582 |
+
いつもの薬を飲んでおかないと。
|
583 |
+
|
584 |
+
|
585 |
+
|
586 |
+
ウマ娘は周期的に、動物で言う発情に近い状態になる。
|
587 |
+
発情と言っても獣のようなものじゃない。ちょっと感覚が鋭敏になったり、感情の起伏が激しくなったり。
|
588 |
+
体がうまく動かせなくなったり。
|
589 |
+
個人差があって、アタシは……結構重めの方だった。 | 目白多伯
|
590 |
+
朝起きて、自分の体に妙な熱がこもっているのに気づいた。
|
591 |
+
目を開いて見慣れた自室を眺める。
|
592 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
593 |
+
「あー、またこの時期ですか……」
|
594 |
+
アタシは唸った。
|
595 |
+
いつもの薬を飲んでおかないと。
|
596 |
+
|
597 |
+
|
598 |
+
|
599 |
+
ウマ娘は周期的に、動物で言う発情に近い状態になる。
|
600 |
+
発情と言っても獣のようなものじゃない。ちょっと感覚が鋭敏になったり、感情の起伏が激しくなったり。
|
601 |
+
体がうまく動かせなくなったり。
|
602 |
+
個人差があって、アタシは……結構重めの方だった。 | 目白阿尔丹
|
603 |
+
朝起きて、自分の体に妙な熱がこもっているのに気づいた。
|
604 |
+
目を開いて見慣れた自室を眺める。
|
605 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
606 |
+
「あー、またこの時期ですか……」
|
607 |
+
アタシは唸った。
|
608 |
+
いつもの薬を飲んでおかないと。
|
609 |
+
|
610 |
+
|
611 |
+
|
612 |
+
ウマ娘は周期的に、動物で言う発情に近い状態になる。
|
613 |
+
発情と言っても獣のようなものじゃない。ちょっと感覚が鋭敏になったり、感情の起伏が激しくなったり。
|
614 |
+
体がうまく動かせなくなったり。
|
615 |
+
個人差があって、アタシは……結構重めの方だった。
|
616 |
+
|
617 |
+
医学の進歩はすごいもので、症状を抑える薬もある。
|
618 |
+
これも好みの差があって、本気でレースをするウマ娘は飲みたがらない子が多い。
|
619 |
+
心が落ち着きすぎてしまうのだ。
|
620 |
+
アタシはそのバランスがいつも悩ましくて……トレーナーさんと契約して1着を目指すようになってからは、走りの調子優先で軽めのものを服用するようになっていた。 | 目白阿尔丹
|
621 |
+
朝起きて、自分の体に妙な熱がこもっているのに気づいた。
|
622 |
+
目を開いて見慣れた自室を眺める。
|
623 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
624 |
+
「あー、またこの時期ですか……」
|
625 |
+
アタシは唸った。
|
626 |
+
いつもの薬を飲んでおかないと。
|
627 |
+
|
628 |
+
|
629 |
+
|
630 |
+
ウマ娘は周期的に、動物で言う発情に近い状態になる。
|
631 |
+
発情と言っても獣のようなものじゃない。ちょっと感覚が鋭敏になったり、感情の起伏が激しくなったり。
|
632 |
+
体がうまく動かせなくなったり。
|
633 |
+
個人差があって、アタシは……結構重めの方だった。
|
634 |
+
|
635 |
+
医学の進歩はすごいもので、症状を抑える薬もある。
|
636 |
+
これも好みの差があって、本気でレースをするウマ娘は飲みたがらない子が多い。
|
637 |
+
心が落ち着きすぎてしまうのだ。
|
638 |
+
アタシはそのバランスがいつも悩ましくて……トレーナーさんと契約して1着を目指すようになってからは、走りの調子優先で軽めのものを服用するようになっていた。 | 优秀素质
|
639 |
+
朝起きて、自分の体に妙な熱がこもっているのに気づいた。
|
640 |
+
目を開いて見慣れた自室を眺める。
|
641 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
642 |
+
「あー、またこの時期ですか……」
|
643 |
+
アタシは唸った。
|
644 |
+
いつもの薬を飲んでおかないと。
|
645 |
+
|
646 |
+
|
647 |
+
|
648 |
+
ウマ娘は周期的に、動物で言う発情に近い状態になる。
|
649 |
+
発情と言っても獣のようなものじゃない。ちょっと感覚が鋭敏になったり、感情の起伏が激しくなったり。
|
650 |
+
体がうまく動かせなくなったり。
|
651 |
+
個人差があって、アタシは……結構重めの方だった。
|
652 |
+
|
653 |
+
医学の進歩はすごいもので、症状を抑える薬もある。
|
654 |
+
これも好みの差があって、本気でレースをするウマ娘は飲みたがらない子が多い。
|
655 |
+
心が落ち着きすぎてしまうのだ。
|
656 |
+
アタシはそのバランスがいつも悩ましくて……トレーナーさんと契約して1着を目指すようになってからは、走りの調子優先で軽めのものを服用するようになっていた。 | 优秀素质
|
657 |
+
『今日もトレーニングサボりまーす』
|
658 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで。
|
659 |
+
少し躊躇ったけれど、送信ボタンを押した。
|
660 |
+
今は午前中、座学の間の休み時間。
|
661 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
662 |
+
ほどなくして返事が来た。
|
663 |
+
『今日はできれば来て欲しい』
|
664 |
+
それを見て、思わず口角が上がってしまう。
|
665 |
+
彼に会いたかった。会って顔が見てみたい。
|
666 |
+
|
667 |
+
でも……今日もダメだ。
|
668 |
+
『ごめんねー。セイちゃん今日は大変な日だから』
|
669 |
+
メッセージを打ち込んで。消した。
|
670 |
+
大変な日って意味深過ぎる。生理とか思われそう。
|
671 |
+
でも……たぶん、生理の周期とかバレてそうだなあ。
|
672 |
+
あからさまにダルく見せて、時々サボってたし。
|
673 |
+
私の様子を探るのが得意で、真面目なトレーナーさんなら、たぶん気づいてる。
|
674 |
+
気づいて、気づかないふりをしている。 | 星云天空
|
675 |
+
『今日もトレーニングサボりまーーす』
|
676 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで。
|
677 |
+
少し躊躇ったけれど、送信ボタンを押した。
|
678 |
+
今は午前中、座学の間の休み時間。
|
679 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
680 |
+
ほどなくして返事が来た。
|
681 |
+
『今日はできれば来て欲しい』
|
682 |
+
それを見て、思わず口角が上がってしまう。
|
683 |
+
彼に会いたかった。会って顔が見てみたい。
|
684 |
+
|
685 |
+
でも……今日もダメだ。
|
686 |
+
『ごめんねー。セイちゃん今日は大変な日だから』
|
687 |
+
メッセージを打ち込んで。消した。
|
688 |
+
大変な日って意味深過ぎる。生理とか思われそ��。
|
689 |
+
でも……たぶん、生理の周期とかバレてそうだなあ。
|
690 |
+
あからさまにダルく見せて、時々サボってたし。
|
691 |
+
私の様子を探るのが得意で、真面目なトレーナーさんなら、たぶん気づいてる。
|
692 |
+
気づいて、気づかないふりをしている。 | 星云天空
|
693 |
+
『今日もトレーニングサボりまーーーーーーす』
|
694 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで。
|
695 |
+
少し躊躇ったけれど、送信ボタンを押した。
|
696 |
+
今は午前中、座学の間の休み時間。
|
697 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
698 |
+
ほどなくして返事が来た。
|
699 |
+
『今日はできれば来て欲しい』
|
700 |
+
それを見て、思わず口角が上がってしまう。
|
701 |
+
彼に会いたかった。会って顔が見てみたい。
|
702 |
+
|
703 |
+
でも……今日もダメだ。
|
704 |
+
『ごめんねー。セイちゃん今日は大変な日だから』
|
705 |
+
メッセージを打ち込んで。消した。
|
706 |
+
大変な日って意味深過ぎる。生理とか思われそう。
|
707 |
+
でも……たぶん、生理の周期とかバレてそうだなあ。
|
708 |
+
あからさまにダルく見せて、時々サボってたし。
|
709 |
+
私の様子を探るのが得意で、真面目なトレーナーさんなら、たぶん気づいてる。
|
710 |
+
気づいて、気づかないふりをしている。 | 星云天空
|
711 |
+
『今日もトレーニングサボりまぁ……す』
|
712 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで。
|
713 |
+
少し躊躇ったけれど、送信ボタンを押した。
|
714 |
+
今は午前中、座学の間の休み時間。
|
715 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
716 |
+
ほどなくして返事が来た。
|
717 |
+
『今日はできれば来て欲しい』
|
718 |
+
それを見て、思わず口角が上がってしまう。
|
719 |
+
彼に会いたかった。会って顔が見てみたい。
|
720 |
+
|
721 |
+
でも……今日もダメだ。
|
722 |
+
『ごめんねー。セイちゃん今日は大変な日だから』
|
723 |
+
メッセージを打ち込んで。消した。
|
724 |
+
大変な日って意味深過ぎる。生理とか思われそう。
|
725 |
+
でも……たぶん、生理の周期とかバレてそうだなあ。
|
726 |
+
あからさまにダルく見せて、時々サボってたし。
|
727 |
+
私の様子を探るのが得意で、真面目なトレーナーさんなら、たぶん気づいてる。
|
728 |
+
気づいて、気づかないふりをしている。 | 星云天空
|
729 |
+
『今日もトレーニングサボりまぁす』
|
730 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで。
|
731 |
+
少し躊躇ったけれど、送信ボタンを押した。
|
732 |
+
今は午前中、座学の間の休み時間。
|
733 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
734 |
+
ほどなくして返事が来た。
|
735 |
+
『今日はできれば来て欲しい』
|
736 |
+
それを見て、思わず口角が上がってしまう。
|
737 |
+
彼に会いたかった。会って顔が見てみたい。
|
738 |
+
|
739 |
+
でも……今日もダメだ。
|
740 |
+
『ごめんねー。セイちゃん今日は大変な日だから』
|
741 |
+
メッセージを打ち込んで。消した。
|
742 |
+
大変な日って意味深過ぎる。生理とか思われそう。
|
743 |
+
でも……たぶん、生理の周期とかバレてそうだなあ。
|
744 |
+
あからさまにダルく見せて、時々サボってたし。
|
745 |
+
私の様子を探るのが得意で、真面目なトレーナーさんなら、たぶん気づいてる。
|
746 |
+
気づいて、気づかないふりをしている。 | 星云天空
|
747 |
+
……そう思うと妙に興奮してきた。
|
748 |
+
太ももをモジモジとこすりつける。
|
749 |
+
いや待ておかしい。普段の私なら絶対考えないし、しないことだ。
|
750 |
+
薬の効きが悪い?そんなことはない。
|
751 |
+
頭ははっきりしてる。体だってちょっとだるいくらいで問題ない。
|
752 |
+
『今週末に雑誌の取材があるから、せめてそこで話す内容を打ち合わせしておきたい』
|
753 |
+
ポコンと通知音がなる。
|
754 |
+
私はそれを見て小さく「うぅ~」って唸った。
|
755 |
+
毎日のように会ってるし、顔を合わせるのが面倒くさいって思うときだってあるのに。
|
756 |
+
なんで今日に限ってこんなに会いたくなるんだろうか。
|
757 |
+
いや違う。会いたくなんてない。会って自分の状態がバレるのが恥ずかしい。
|
758 |
+
でも……。
|
759 |
+
『ちょっとだけなら』
|
760 |
+
結局、自分の気持ちに負けて返事をしてしまった。
|
761 |
+
|
762 |
+
私、セイウンスカイはウマ娘特有の生理現象……発情期の真っ只中にあった。 | 星云天空
|
763 |
+
私の発情期の症状は平凡だ。
|
764 |
+
ちょっと心が揺れやすくなって、体がだるくなるくらい。
|
765 |
+
たぶん軽めな方だと思う。
|
766 |
+
発情期に入ったときは、さっさと抑制剤を飲んでダラダラと過ご���に限る。
|
767 |
+
今まではそんな風に何事もなくやり過ごしてきたのに。
|
768 |
+
誰かに会いたいとか、会いたくないとか、こんなに心が揺れ動くのは初めてだった。
|
769 |
+
|
770 |
+
もしかして……私はトレーナーさんのことが好きなんだろうか。
|
771 |
+
いやいや、そんなこと考えたことない。
|
772 |
+
ちょっと、ちょーっと気になってるくらいだ。
|
773 |
+
まあ確かにズルい感じで私の気持ちを引き出してくるし、諦めないしつこさはウザいけど頼りになるって思うときだってある。
|
774 |
+
でもトレーナーとして一緒に頑張ってるからって、そんなに簡単にほだされるような軽いセイちゃんじゃないつもりだ。
|
775 |
+
焦らして焦らして。
|
776 |
+
彼が私が好きな決定的な証拠を見つけてやって。
|
777 |
+
えー、トレーナーさんセイちゃんのこと好きだったんですか~?そんな、担当ウマ娘に恋しちゃうなんて、困っちゃう人ですね~。みたいにイジって。
|
778 |
+
トレーナーさんがそんなにお願いするなら、付き合ってあげても……。
|
779 |
+
……じゃない!そうじゃない。
|
780 |
+
そんな妄想が勝手に湧き出すのが止められない。
|
781 |
+
手を、そしてついでにウマ耳もパタパタとふるって熱くなった顔に風を送る。 | 星云天空
|
782 |
+
私の発情期の症状は平凡だ。
|
783 |
+
ちょっと心が揺れやすくなって、体がだるくなるくらい。
|
784 |
+
たぶん軽めな方だと思う。
|
785 |
+
発情期に入ったときは、さっさと抑制剤を飲んでダラダラと過ごすに限る。
|
786 |
+
今まではそんな風に何事もなくやり過ごしてきたのに。
|
787 |
+
誰かに会いたいとか、会いたくないとか、こんなに心が揺れ動くのは初めてだった。
|
788 |
+
|
789 |
+
もしかして……私はトレーナーさんのことが好きなんだろうか。
|
790 |
+
いやいや、そんなこと考えたことない。
|
791 |
+
ちょっと、ちょーっと気になってるくらいだ。
|
792 |
+
まあ確かにズルい感じで私の気持ちを引き出してくるし、諦めないしつこさはウザいけど頼りになるって思うときだってある。
|
793 |
+
でもトレーナーとして一緒に頑張ってるからって、そんなに簡単にほだされるような軽いセイちゃんじゃないつもりだ。
|
794 |
+
焦らして焦らして。
|
795 |
+
彼が私が好きな決定的な証拠を見つけてやって。
|
796 |
+
えー、トレーナーさんセイちゃんのこと好きだったんですか~?そんな、担当ウマ娘に恋しちゃうなんて、困っちゃう人ですね~。みたいにイジって。
|
797 |
+
トレーナーさんがそんなにお願いするなら、付き合ってあげても……。
|
798 |
+
……じゃない!そうじゃない。 | 星云天空
|
799 |
+
私の発情期の症状は平凡だ。
|
800 |
+
ちょっと心が揺れやすくなって、体がだるくなるくらい。
|
801 |
+
たぶん軽めな方だと思う。
|
802 |
+
発情期に入ったときは、さっさと抑制剤を飲んでダラダラと過ごすに限る。
|
803 |
+
今まではそんな風に何事もなくやり過ごしてきたのに。
|
804 |
+
誰かに会いたいとか、会いたくないとか、こんなに心が揺れ動くのは初めてだった。
|
805 |
+
|
806 |
+
もしかして……私はトレーナーさんのことが好きなんだろうか。
|
807 |
+
いやいや、そんなこと考えたことない。
|
808 |
+
ちょっと、ちょーっと気になってるくらいだ。
|
809 |
+
まあ確かにズルい感じで私の気持ちを引き出してくるし、諦めないしつこさはウザいけど頼りになるって思うときだってある。
|
810 |
+
でもトレーナーとして一緒に頑張ってるからって、そんなに簡単にほだされるような軽いセイちゃんじゃないつもりだ。
|
811 |
+
焦らして焦らして。
|
812 |
+
彼が私が好きな決定的な証拠を見つけてやって。
|
813 |
+
| 星云天空
|
814 |
+
私の発情期の症状は平凡だ。
|
815 |
+
ちょっと心が揺れやすくなって、体がだるくなるくらい。
|
816 |
+
たぶん軽めな方だと思う。
|
817 |
+
発情期に入ったときは、さっさと抑制剤を飲んでダラダラと過ごすに限る。
|
818 |
+
今まではそんな風に何事もなくやり過ごしてきたのに。
|
819 |
+
誰かに会いたいとか、会いたくないとか、こんなに心が揺れ動くのは初めてだった。
|
820 |
+
| 星云天空
|
821 |
+
私の発情期の症状は平凡だ。
|
822 |
+
ちょっと心が揺れやすくなって、体がだるくなるくらい。
|
823 |
+
たぶん軽めな方だと思う。
|
824 |
+
発情期に入ったときは、さっさと抑制剤を飲んでダラダラと過ごすに限る。
|
825 |
+
今まではそんな風に何事もなくやり過ごしてきたのに。
|
826 |
+
誰かに会いたいとか、会いたくないとか、こんなに心が揺れ動くのは初めてだった。
|
827 |
+
| 星云天空
|
828 |
+
女士们先生们大家好,我是星云天空 | 星云天空
|
829 |
+
女士们先生们大家好,我是星云天空 | 星云天空
|
830 |
+
皆様こんにちは、アタシはセイウンスカイです! | 星云天空
|
831 |
+
皆様こんにちは、アタシはセイウンスカイです! | 星云天空
|
832 |
+
皆様こんにちは、アタシはセイウンスカイです!今日ここにきてほかのためではなく、皆殺しに来ました! | 星云天空
|
833 |
+
こんにちは、アタシはセイウンスカイです!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さん、に、いち、スタート! | 星云天空
|
834 |
+
こんにちは、アタシはセイウンスカイです!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スタート! | 星云天空
|
835 |
+
こんにちは、アタシはセイウンスカイです!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スタート! | 爱丽速子
|
836 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スタート! | 爱丽速子
|
837 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スタート! | 爱丽速子
|
838 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スタート! | 爱丽速子
|
839 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スタート! | 爱丽速子
|
840 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スター!ト! | 爱丽速子
|
841 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スター!ト! | 爱丽速子
|
842 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スター!ト! | 爱丽速子
|
843 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スター!ト! | 爱丽速子
|
844 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スター!ト! | 爱丽速子
|
845 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スター!ト! | 爱丽速子
|
846 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スター!ト! | 爱丽速子
|
847 |
+
こんにちは!今日ここにきて他のためではなく、皆殺しに来ました!皆さん、準備はできていますか?さんー、にー、いちー、スター!ト! | 爱丽速子
|
848 |
+
部屋の中は、思った以上に危険なところだった。
|
849 |
+
春の陽気でポカポカと暖かく、窓を開けるほど熱くもない。
|
850 |
+
そのおかげか換気をすることもなく、トレーナーさんの匂いが全体に広がっているのがわかった。
|
851 |
+
力が抜ける。それと同時に体の芯が熱を持つのを感じた。
|
852 |
+
どうにもダルくなって、ソファに座り込んでしまう。 | 爱丽速子
|
853 |
+
部屋の中は、思った以上に危険なところだった。
|
854 |
+
春の陽気でポカポカと暖かく、窓を開けるほど熱くもない。
|
855 |
+
そのおかげか換気をすることもなく、トレーナーさんの匂いが全体に広がっているのがわかった。
|
856 |
+
力が抜ける。それと同時に体の芯が熱を持つのを感じた。
|
857 |
+
どうにもダルくなって、ソファに座り込んでしまう。 | 美浦波旁
|
858 |
+
……起床。現在の時刻は7時28分。
|
859 |
+
目覚まし時計が鳴る直前に起きることができました。
|
860 |
+
今日の体調は……良好とは言えないようです。
|
861 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
862 |
+
この症状は何度も経験したことがあります。
|
863 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
864 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
865 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
866 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
867 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
868 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
869 |
+
……起床。現在の時刻は7時28分。
|
870 |
+
目覚まし時計が鳴る直前に起きることができました。
|
871 |
+
今日の体調は……良好とは言えないようです。
|
872 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
873 |
+
この症状は何度も経験したことがあります。
|
874 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
875 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
876 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
877 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
878 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
879 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
880 |
+
……起床。現在の時刻は7時28分。
|
881 |
+
目覚まし時計が鳴る直前に起きることができました。
|
882 |
+
今日の体調は……良好とは言えないようです。
|
883 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
884 |
+
この症状は何度も経験したことがあります。
|
885 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
886 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
887 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
888 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
889 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
890 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
891 |
+
はりきっていこう! | 特别周
|
892 |
+
はりきっていこう! | 特别周
|
893 |
+
はりきっていこう! | 特别周
|
894 |
+
はりきっていこう! | 特别周
|
895 |
+
……起床。現在の時刻は7時28分。
|
896 |
+
目覚まし時計が鳴る直前に起きることができました。
|
897 |
+
今日の体調は……良好とは言えないようです。
|
898 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
899 |
+
この症状は何度も経験したことがあります。
|
900 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
901 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
902 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
903 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
904 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
905 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
906 |
+
……起床。現在の時刻は7時28分。
|
907 |
+
目覚まし時計が鳴る直前に起きることができました。
|
908 |
+
今日の体調は……良好とは言えないようです。
|
909 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
910 |
+
この症状は何度も経験したことがあります。
|
911 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
912 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
913 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
914 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
915 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
916 |
+
私は机の引き出しから『���効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
917 |
+
……起床。現在の時刻は7時28分。
|
918 |
+
目覚まし時計が鳴る直前に起きることができました。
|
919 |
+
今日の体調は……良好とは言えないようです。
|
920 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
921 |
+
この症状は何度も経験したことがあります。
|
922 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
923 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
924 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
925 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
926 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
927 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
928 |
+
……起床。現在の時刻は7時28分。
|
929 |
+
目覚まし時計が鳴る直前に起きることができました。
|
930 |
+
今日の体調は……良好とは言えないようです。
|
931 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
932 |
+
この症状は何度も経験したことがあります。
|
933 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
934 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
935 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
936 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
937 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
938 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
939 |
+
はりきっていこう! | 特别周
|
940 |
+
……起床。現在の時刻は7時28分。
|
941 |
+
目覚まし時計が鳴る直前に起きることができました。
|
942 |
+
今日の体調は……良好とは言えないようです。
|
943 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
944 |
+
この症状は何度も経験したことがあります。
|
945 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
946 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
947 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
948 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
949 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
950 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
951 |
+
……起床。現在の時刻は7時28分。
|
952 |
+
目覚まし時計が鳴る直前に起きることができました。
|
953 |
+
今日の体調は……良好とは言えないようです。
|
954 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
955 |
+
この症状は何度も経験したことがあります。
|
956 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
957 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
958 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
959 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
960 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
961 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 美浦波旁
|
962 |
+
……起床。現在の時刻は7時28分。
|
963 |
+
目覚まし時計が鳴る直前に起きることができました。
|
964 |
+
今日の体調は……良好とは言えないようです。
|
965 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
966 |
+
この症状は何度も経験したことがあります。
|
967 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
968 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
969 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
970 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
971 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
972 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 特别周
|
973 |
+
……起床。現在の時刻は7時28分。
|
974 |
+
目覚まし時計が鳴る直前に起きることができました。
|
975 |
+
今日の体調は……良好とは言えないようです。
|
976 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
977 |
+
この症状は何度も経験したことがあります。
|
978 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
979 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
980 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
981 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
982 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
983 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 特别周
|
984 |
+
……起床。現在の時刻は7時28分。
|
985 |
+
目覚まし時計が鳴る直前に起きることができました。
|
986 |
+
今日の体調は……良好とは言えないようです。
|
987 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
988 |
+
この症状は何度も経験したことがあります。
|
989 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
990 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
991 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
992 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
993 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
994 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 特别周
|
995 |
+
……起床。現在の時刻は7時28分。
|
996 |
+
目覚まし時計が鳴る直前に起きることができました。
|
997 |
+
今日の体調は……良好とは言えないようです。
|
998 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
999 |
+
この症状は何度も経験したことがあります。
|
1000 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1001 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。
|
1002 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
1003 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
1004 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
1005 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。 | 特别周
|
1006 |
+
はりきっていこう! | 特别周
|
1007 |
+
はりきっていこう! | 特别周
|
1008 |
+
はりきっていこう! | 特别周
|
1009 |
+
はりきっていこう! | 特别周
|
1010 |
+
はりきっていこう! | 特别周
|
1011 |
+
はりきっていこう! | 特别周
|
1012 |
+
はりきっていこう! | 特别周
|
1013 |
+
はりきっていこう! | 特别周
|
1014 |
+
はりきっていこう! | 特别周
|
1015 |
+
はりきっていこう! | 特别周
|
1016 |
+
はりきっていこう! | 特别周
|
1017 |
+
はりきっていこう! | 特别周
|
1018 |
+
はりきっていこう! | 特别周
|
1019 |
+
はりきっていこう! | 特别周
|
1020 |
+
はりきっていこう! | 特别周
|
1021 |
+
はりきっていこう! | 特别周
|
1022 |
+
はりきっていこう! | 特别周
|
1023 |
+
はりきっていこう! | 特别周
|
1024 |
+
はりきっていこう! | 特别周
|
1025 |
+
はりきっていこう! | 特别周
|
1026 |
+
はりきっていこう! | 特别周
|
1027 |
+
……起床。現在の時刻は7時28分。
|
1028 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1029 |
+
今日の体調は……良好とは言えないようです。
|
1030 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1031 |
+
この症状は何度も経験したことがあります。
|
1032 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1033 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1034 |
+
……起床。現在の時刻は7時28分。
|
1035 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1036 |
+
今日の体調は……良好とは言えないようです。
|
1037 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1038 |
+
この症状は何度も経験したことがあります。
|
1039 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1040 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1041 |
+
……起床。現在の時刻は7時28分。
|
1042 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1043 |
+
今日の体調は……良好とは言えないようです。
|
1044 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1045 |
+
この症状は何度も経験したことがあります。
|
1046 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1047 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1048 |
+
……起床。現在の時刻は7時28分。
|
1049 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1050 |
+
今日の体調は……良好とは言えないようです。
|
1051 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1052 |
+
この症状は何度も経験したことがあります。
|
1053 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1054 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1055 |
+
……起床。現在の時刻は7時28分。
|
1056 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1057 |
+
今日の体調は……良好とは言えないようです。
|
1058 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1059 |
+
この症状は何度も経験したことがあります。
|
1060 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1061 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1062 |
+
……起床。現在の時刻は7時28分。
|
1063 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1064 |
+
今日の体調は……良好とは言えないようです。
|
1065 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1066 |
+
この症状は何度も経験したことがあります。
|
1067 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1068 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1069 |
+
……起床。現在の時刻は7時28分。
|
1070 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1071 |
+
今日の体調は……良好とは言えないようです。
|
1072 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1073 |
+
この症状は何度も経験したことがあります。
|
1074 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1075 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1076 |
+
……起床。現在の時刻は7時28分。
|
1077 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1078 |
+
今日の体調は……良好とは言えないようです。
|
1079 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1080 |
+
この症状は何度も経験したことがあります。
|
1081 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1082 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1083 |
+
……起床。現在の時刻は7時28分。
|
1084 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1085 |
+
今日の体調は……良好とは言えないようです。
|
1086 |
+
「微熱の兆候を���認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1087 |
+
この症状は何度も経験したことがあります。
|
1088 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1089 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1090 |
+
……起床。現在の時刻は7時28分。
|
1091 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1092 |
+
今日の体調は……良好とは言えないようです。
|
1093 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1094 |
+
この症状は何度も経験したことがあります。
|
1095 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1096 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1097 |
+
……起床。現在の時刻は7時28分。
|
1098 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1099 |
+
今日の体調は……良好とは言えないようです。
|
1100 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1101 |
+
この症状は何度も経験したことがあります。
|
1102 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1103 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1104 |
+
……起床。現在の時刻は7時28分。
|
1105 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1106 |
+
今日の体調は……良好とは言えないようです。
|
1107 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1108 |
+
この症状は何度も経験したことがあります。
|
1109 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1110 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1111 |
+
……起床。現在の時刻は7時28分。
|
1112 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1113 |
+
今日の体調は……良好とは言えないようです。
|
1114 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1115 |
+
この症状は何度も経験したことがあります。
|
1116 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1117 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 特别周
|
1118 |
+
……起床。現在の時刻は7時28分。
|
1119 |
+
目覚まし時計が鳴る直前に起きることができました。
|
1120 |
+
今日の体調は……良好とは言えないようです。
|
1121 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり」
|
1122 |
+
この症状は何度も経験したことがあります。
|
1123 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました。
|
1124 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……。 | 爱丽数码
|
1125 |
+
……起床。現在の時刻は7時28分!
|
1126 |
+
目覚まし時計が鳴る直前に起きることができました!
|
1127 |
+
今日の体調は……良好とは言えないようです!
|
1128 |
+
「微熱の兆候を確認……嗅覚の鋭敏化を確認……視覚への影響もあり!」
|
1129 |
+
この症状は何度も経験したことがあります!
|
1130 |
+
念のため、机の引き出しから体温計を取り出して脇の下にはさみました!
|
1131 |
+
この体温計ですら、時々故障してERRとしか表示されないことがあるので、あまり信用できませんが……! | 爱丽数码
|
1132 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
1133 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
1134 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
1135 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専用のお薬を取り出しました。
|
1136 |
+
|
1137 |
+
| 爱丽数码
|
1138 |
+
しばらくしてピピッという小さな音が鳴りました。体温は36.9℃。平熱よりも少し高いくらいです。
|
1139 |
+
しかし、体が動かしづらい、といった異常は確認できません。熱っぽい、という感覚のみ先行していて、頭の回転が鈍っていることがわかります。
|
1140 |
+
「推論完了。ステータス『発情』であることを断定。対処方法を実行します」
|
1141 |
+
私は机の引き出しから『有効成分4.5mg』と記載されている専���のお薬を取り出しました。
|
1142 |
+
|
1143 |
+
| 玉藻十字
|
1144 |
+
朝食後にお薬を飲んだおかげで、頭がとても冴え渡っています。
|
1145 |
+
些細なことに心が動かされず、自分が子供の頃に理想とする、完璧なサイボーグになったような気さえします。
|
1146 |
+
「あの、ブルボンさん……。今日は、どうしたんですか?」
|
1147 |
+
カフェテリアで一緒にお昼ごはんを食べているライスシャワーさんに指摘されました。
|
1148 |
+
「私に何か異常がありましたでしょうか?」
|
1149 |
+
「いえ、その……いつもより、お話が少なくて、表情も変わらないから……ライス、何か気に触るようなことしちゃったかな?」
|
1150 |
+
ライスさんが心配そうに、そしてご自身を責めるように問いかけてきます。
|
1151 |
+
普段であれば気遣った言葉を何か言いたくなるのですが……そして結局言えないのですが……今日の私はそれに対してあまり何かをしようという気になりませんでした。
|
1152 |
+
ただシンプルに、答えだけ返します。 | 玉藻十字
|
1153 |
+
朝食後にお薬を飲んだおかげで、頭がとても冴え渡っています。
|
1154 |
+
些細なことに心が動かされず、自分が子供の頃に理想とする、完璧なサイボーグになったような気さえします。
|
1155 |
+
「あの、ブルボンさん……。今日は、どうしたんですか?」
|
1156 |
+
カフェテリアで一緒にお昼ごはんを食べているライスシャワーさんに指摘されました。
|
1157 |
+
「私に何か異常がありましたでしょうか?」
|
1158 |
+
「いえ、その……いつもより、お話が少なくて、表情も変わらないから……ライス、何か気に触るようなことしちゃったかな?」
|
1159 |
+
ライスさんが心配そうに、そしてご自身を責めるように問いかけてきます。
|
1160 |
+
普段であれば気遣った言葉を何か言いたくなるのですが……そして結局言えないのですが……今日の私はそれに対してあまり何かをしようという気になりませんでした。
|
1161 |
+
ただシンプルに、答えだけ返します。 | 米浴
|
1162 |
+
「発情期が始まったので、お薬を飲んでいます。その影響だと思われます」 | 美浦波旁
|
1163 |
+
私の症状はひどいのでしょうか?他人と比較したことがないので、よくわかりません。
|
1164 |
+
症状が出て以来、両親の買ってくれたお薬を飲んでいました。
|
1165 |
+
前回の発情期の際に症状が強くなったので、クラスメイトの持っていた強い成分のお薬に変えたところ、完全に症状を抑え込むことに成功しました。
|
1166 |
+
お薬を飲んだ後は極めて冷静になれるので、ひどい、ひどくないといった症状の違いを意識したことはありません。
|
1167 |
+
結局その日の昼食はライスさんがいろいろ話しかけてくれても、ステータス『平静』が継続し。脳内からレスポンスを得ることができず。
|
1168 |
+
あまり会話をすることができませんでした。
|
1169 |
+
|
1170 |
+
| 美浦波旁
|
1171 |
+
はりきっていこう! | 特别周
|
1172 |
+
はりきっていこう! | 米浴
|
1173 |
+
はりきっていこう! | 曼城茶座
|
1174 |
+
はりきっていこう! | 荣进闪耀
|
1175 |
+
はりきっていこう! | 真机伶
|
1176 |
+
『今日もトレーニングサボりまーす』
|
1177 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで。
|
1178 |
+
少し躊躇ったけれど、送信ボタンを押した。
|
1179 |
+
今は午前中、座学の間の休み時間。
|
1180 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
1181 |
+
ほどなくして返事が来た。
|
1182 |
+
『今日はできれば来て欲しい』
|
1183 |
+
それを見て、思わず口角が上がってしまう。
|
1184 |
+
彼に会いたかった。会って顔が見てみたい。 | 星云天空
|
1185 |
+
『今日もトレーニングサボりまーす。。。』
|
1186 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで!
|
1187 |
+
少し躊躇ったけれど、送信ボタンを押した!
|
1188 |
+
今は午前中、座学の間の休み時間。
|
1189 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
1190 |
+
ほどなくして返事が来た。
|
1191 |
+
『今日はできれば来て欲しい』
|
1192 |
+
それを見て、思わず口角が上がってしまう。
|
1193 |
+
彼に会いたかった。会って顔が見てみたい。 | 星云天空
|
1194 |
+
『今日もトレーニングサボりまーす。。。』
|
1195 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで!
|
1196 |
+
少し躊躇ったけれど、送信ボタンを押した!
|
1197 |
+
今は午前中、座学の間の休み時間。
|
1198 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
1199 |
+
ほどなくして返事が来た。
|
1200 |
+
『今日はできれば来て欲しい』
|
1201 |
+
それを見て、思わず口角が上がってしまう。
|
1202 |
+
彼に会いたかった。会って顔が見てみたい。 | 气槽
|
1203 |
+
『今日もトレーニングサボりまーす。。。』
|
1204 |
+
スマホのメッセージアプリを立ち上げて、そのメッセージを打ち込んで!
|
1205 |
+
少し躊躇ったけれど、送信ボタンを押した!
|
1206 |
+
今は午前中、座学の間の休み時間。
|
1207 |
+
きっとトレーナーさんは何やらよくわからない事務仕事に明け暮れているのだろう。
|
1208 |
+
ほどなくして返事が来た。
|
1209 |
+
『今日はできれば来て欲しい』
|
1210 |
+
それを見て、思わず口角が上がってしまう。
|
1211 |
+
彼に会いたかった。会って顔が見てみたい。 | 美浦波旁
|
1212 |
+
朝起きて、自分の体に妙な熱がこもっているのに気づいた。
|
1213 |
+
目を開いて見慣れた自室を眺める。
|
1214 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
1215 |
+
「あー、またこの時期ですか……」
|
1216 |
+
アタシは唸った。
|
1217 |
+
いつもの薬を飲んでおかないと。 | 优秀素质
|
1218 |
+
朝起きて、自分の体にみょうな熱がこもっているのに気づいた。
|
1219 |
+
目を開いて見慣れた自室を眺める。
|
1220 |
+
周囲のコントラストが上がったように鮮やかに映り、匂いまで視覚的に感じる。
|
1221 |
+
「あー、またこの時期ですか……」
|
1222 |
+
アタシは唸った。
|
1223 |
+
いつもの薬を飲んでおかないと。
|
1224 |
+
|
|
1225 |
+
ウマ娘は周期的に、動物で言う発情に近い状態になる。
|
1226 |
+
発情と言っても獣のようなものじゃない。ちょっと感覚が鋭敏になったり、感情の起伏が激しくなったり。
|
1227 |
+
体がうまく動かせなくなったり。
|
1228 |
+
個人差があって、アタシは……結構重めの方だった。
|
1229 |
+
|
|
1230 |
+
医学の進歩はすごいもので、症状を抑える薬もある。
|
1231 |
+
これも好みの差があって、本気でレースをするウマ娘は飲みたがらない子が多い。
|
1232 |
+
心が落ち着きすぎてしまうのだ。
|
1233 |
+
アタシはそのバランスがいつも悩ましくて……トレーナーさんと契約して1着を目指すようになってからは、走りの調子優先で軽めのものを服用するようになっていた。 | 优秀素质
|
1234 |
+
朝起きて目を覚ますと、微熱を感じました。
|
1235 |
+
視界がピカピカ。頭がグルグル。
|
1236 |
+
これは……発情期ですね!この間あったばっかりなのにまた来てしまうとは。
|
1237 |
+
いわゆる当たり年なのでしょうか。
|
1238 |
+
当たりという言葉には心が踊りますが、こう何度も来てもらうのはたまりません。
|
1239 |
+
|
|
1240 |
+
それとも……トレーナーさんからいただいたこのラッキーアイテムが原因でしょうか。
|
1241 |
+
私は枕の下に置いておいたネクタイを取り出して、ちょっと詰まり気味な鼻に押し当てます。そして深く鼻から息吸い込みました。
|
1242 |
+
かなり匂いが薄まってしまいましたが、まだトレーナーさんの匂いがします。
|
1243 |
+
ハァー……これです、これです。こんなに気持ちがドキワクするものがラッキーアイテムでないわけがありません。
|
1244 |
+
|
|
1245 |
+
占い雑誌の今月号に「カレのネクタイを枕の下に置いて寝ると幸運が訪れる!」とあったので、トレーナーさんのものを無理やり……ではなく、拝み倒してその場で拝借させていただいた甲斐がありました。
|
1246 |
+
おかげで運気も上昇し、寝付きもよく。体調は万全だったのです。
|
1247 |
+
彼のネクタイは寝てる時の大半の時間は枕の下ではなく、私の首元にありましたが、それぐらい誤差でしょう!たぶん。
|
1248 |
+
それがこのような事態を招くとは……これは、トレーナーさんが私の運命の人である証拠のようなものですね、きっと。
|
1249 |
+
|
|
1250 |
+
私は生理用品入れから発情症状を抑える薬を取り出し、ジャージに着替え。
|
1251 |
+
ややふらつく足取りで朝食に向かいました。
|
1252 |
+
|
1253 |
+
| 待兼福来
|
1254 |
+
はりきっていこう! | 琵琶晨光
|
1255 |
+
はりきっていこう! | 吉兆
|
1256 |
+
はりきっていこう! | 拜耶土耳其
|
1257 |
+
はりきっていこう! | 达利阿拉伯
|
1258 |
+
はりきっていこう! | 秋川弥生
|
1259 |
+
起床っ!おはようございます! | 秋川弥生
|
1260 |
+
起床っ!おはようございます! | 秋川弥生
|
1261 |
+
起床っ!おはようございますっ!!! | 秋川弥生
|
1262 |
+
起床っ!おはようございますっ!!! | 骏川手纲
|
1263 |
+
本日の目標でございます。 | 骏川手纲
|
1264 |
+
本日のおかずでございます。 | 骏川手纲
|
1265 |
+
はりきっていこう! | 特别周
|
1266 |
+
はりきっていこう! | 特别周
|
1267 |
+
はりきっていこう! | 特别周
|
losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def feature_loss(fmap_r, fmap_g):
|
5 |
+
loss = 0
|
6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
+
for rl, gl in zip(dr, dg):
|
8 |
+
rl = rl.float().detach()
|
9 |
+
gl = gl.float()
|
10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
11 |
+
|
12 |
+
return loss * 2
|
13 |
+
|
14 |
+
|
15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
+
loss = 0
|
17 |
+
r_losses = []
|
18 |
+
g_losses = []
|
19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
+
dr = dr.float()
|
21 |
+
dg = dg.float()
|
22 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
23 |
+
g_loss = torch.mean(dg**2)
|
24 |
+
loss += r_loss + g_loss
|
25 |
+
r_losses.append(r_loss.item())
|
26 |
+
g_losses.append(g_loss.item())
|
27 |
+
|
28 |
+
return loss, r_losses, g_losses
|
29 |
+
|
30 |
+
|
31 |
+
def generator_loss(disc_outputs):
|
32 |
+
loss = 0
|
33 |
+
gen_losses = []
|
34 |
+
for dg in disc_outputs:
|
35 |
+
dg = dg.float()
|
36 |
+
l = torch.mean((1 - dg) ** 2)
|
37 |
+
gen_losses.append(l)
|
38 |
+
loss += l
|
39 |
+
|
40 |
+
return loss, gen_losses
|
41 |
+
|
42 |
+
|
43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
+
"""
|
45 |
+
z_p, logs_q: [b, h, t_t]
|
46 |
+
m_p, logs_p: [b, h, t_t]
|
47 |
+
"""
|
48 |
+
z_p = z_p.float()
|
49 |
+
logs_q = logs_q.float()
|
50 |
+
m_p = m_p.float()
|
51 |
+
logs_p = logs_p.float()
|
52 |
+
z_mask = z_mask.float()
|
53 |
+
|
54 |
+
kl = logs_p - logs_q - 0.5
|
55 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
56 |
+
kl = torch.sum(kl * z_mask)
|
57 |
+
l = kl / torch.sum(z_mask)
|
58 |
+
return l
|
mel_processing.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data
|
3 |
+
from librosa.filters import mel as librosa_mel_fn
|
4 |
+
|
5 |
+
MAX_WAV_VALUE = 32768.0
|
6 |
+
|
7 |
+
|
8 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
9 |
+
"""
|
10 |
+
PARAMS
|
11 |
+
------
|
12 |
+
C: compression factor
|
13 |
+
"""
|
14 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
15 |
+
|
16 |
+
|
17 |
+
def dynamic_range_decompression_torch(x, C=1):
|
18 |
+
"""
|
19 |
+
PARAMS
|
20 |
+
------
|
21 |
+
C: compression factor used to compress
|
22 |
+
"""
|
23 |
+
return torch.exp(x) / C
|
24 |
+
|
25 |
+
|
26 |
+
def spectral_normalize_torch(magnitudes):
|
27 |
+
output = dynamic_range_compression_torch(magnitudes)
|
28 |
+
return output
|
29 |
+
|
30 |
+
|
31 |
+
def spectral_de_normalize_torch(magnitudes):
|
32 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
mel_basis = {}
|
37 |
+
hann_window = {}
|
38 |
+
|
39 |
+
|
40 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
41 |
+
if torch.min(y) < -1.0:
|
42 |
+
print("min value is ", torch.min(y))
|
43 |
+
if torch.max(y) > 1.0:
|
44 |
+
print("max value is ", torch.max(y))
|
45 |
+
|
46 |
+
global hann_window
|
47 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
48 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
49 |
+
if wnsize_dtype_device not in hann_window:
|
50 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
51 |
+
dtype=y.dtype, device=y.device
|
52 |
+
)
|
53 |
+
|
54 |
+
y = torch.nn.functional.pad(
|
55 |
+
y.unsqueeze(1),
|
56 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
57 |
+
mode="reflect",
|
58 |
+
)
|
59 |
+
y = y.squeeze(1)
|
60 |
+
|
61 |
+
spec = torch.stft(
|
62 |
+
y,
|
63 |
+
n_fft,
|
64 |
+
hop_length=hop_size,
|
65 |
+
win_length=win_size,
|
66 |
+
window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center,
|
68 |
+
pad_mode="reflect",
|
69 |
+
normalized=False,
|
70 |
+
onesided=True,
|
71 |
+
return_complex=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
+
return spec
|
76 |
+
|
77 |
+
|
78 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
79 |
+
global mel_basis
|
80 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
81 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
82 |
+
if fmax_dtype_device not in mel_basis:
|
83 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
84 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
85 |
+
dtype=spec.dtype, device=spec.device
|
86 |
+
)
|
87 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
88 |
+
spec = spectral_normalize_torch(spec)
|
89 |
+
return spec
|
90 |
+
|
91 |
+
|
92 |
+
def mel_spectrogram_torch(
|
93 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
94 |
+
):
|
95 |
+
if torch.min(y) < -1.0:
|
96 |
+
print("min value is ", torch.min(y))
|
97 |
+
if torch.max(y) > 1.0:
|
98 |
+
print("max value is ", torch.max(y))
|
99 |
+
|
100 |
+
global mel_basis, hann_window
|
101 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
102 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
103 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
104 |
+
if fmax_dtype_device not in mel_basis:
|
105 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
106 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
107 |
+
dtype=y.dtype, device=y.device
|
108 |
+
)
|
109 |
+
if wnsize_dtype_device not in hann_window:
|
110 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
111 |
+
dtype=y.dtype, device=y.device
|
112 |
+
)
|
113 |
+
|
114 |
+
y = torch.nn.functional.pad(
|
115 |
+
y.unsqueeze(1),
|
116 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
117 |
+
mode="reflect",
|
118 |
+
)
|
119 |
+
y = y.squeeze(1)
|
120 |
+
|
121 |
+
spec = torch.stft(
|
122 |
+
y,
|
123 |
+
n_fft,
|
124 |
+
hop_length=hop_size,
|
125 |
+
win_length=win_size,
|
126 |
+
window=hann_window[wnsize_dtype_device],
|
127 |
+
center=center,
|
128 |
+
pad_mode="reflect",
|
129 |
+
normalized=False,
|
130 |
+
onesided=True,
|
131 |
+
return_complex=False,
|
132 |
+
)
|
133 |
+
|
134 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
135 |
+
|
136 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
137 |
+
spec = spectral_normalize_torch(spec)
|
138 |
+
|
139 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import modules
|
8 |
+
import attentions
|
9 |
+
import monotonic_align
|
10 |
+
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
from text import symbols, num_tones, num_languages
|
16 |
+
|
17 |
+
|
18 |
+
class DurationDiscriminator(nn.Module): # vits2
|
19 |
+
def __init__(
|
20 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
self.in_channels = in_channels
|
25 |
+
self.filter_channels = filter_channels
|
26 |
+
self.kernel_size = kernel_size
|
27 |
+
self.p_dropout = p_dropout
|
28 |
+
self.gin_channels = gin_channels
|
29 |
+
|
30 |
+
self.drop = nn.Dropout(p_dropout)
|
31 |
+
self.conv_1 = nn.Conv1d(
|
32 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
33 |
+
)
|
34 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
35 |
+
self.conv_2 = nn.Conv1d(
|
36 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
37 |
+
)
|
38 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
39 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
40 |
+
|
41 |
+
self.pre_out_conv_1 = nn.Conv1d(
|
42 |
+
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
43 |
+
)
|
44 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
45 |
+
self.pre_out_conv_2 = nn.Conv1d(
|
46 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
47 |
+
)
|
48 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
49 |
+
|
50 |
+
if gin_channels != 0:
|
51 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
52 |
+
|
53 |
+
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
54 |
+
|
55 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
56 |
+
dur = self.dur_proj(dur)
|
57 |
+
x = torch.cat([x, dur], dim=1)
|
58 |
+
x = self.pre_out_conv_1(x * x_mask)
|
59 |
+
x = torch.relu(x)
|
60 |
+
x = self.pre_out_norm_1(x)
|
61 |
+
x = self.drop(x)
|
62 |
+
x = self.pre_out_conv_2(x * x_mask)
|
63 |
+
x = torch.relu(x)
|
64 |
+
x = self.pre_out_norm_2(x)
|
65 |
+
x = self.drop(x)
|
66 |
+
x = x * x_mask
|
67 |
+
x = x.transpose(1, 2)
|
68 |
+
output_prob = self.output_layer(x)
|
69 |
+
return output_prob
|
70 |
+
|
71 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
72 |
+
x = torch.detach(x)
|
73 |
+
if g is not None:
|
74 |
+
g = torch.detach(g)
|
75 |
+
x = x + self.cond(g)
|
76 |
+
x = self.conv_1(x * x_mask)
|
77 |
+
x = torch.relu(x)
|
78 |
+
x = self.norm_1(x)
|
79 |
+
x = self.drop(x)
|
80 |
+
x = self.conv_2(x * x_mask)
|
81 |
+
x = torch.relu(x)
|
82 |
+
x = self.norm_2(x)
|
83 |
+
x = self.drop(x)
|
84 |
+
|
85 |
+
output_probs = []
|
86 |
+
for dur in [dur_r, dur_hat]:
|
87 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
88 |
+
output_probs.append(output_prob)
|
89 |
+
|
90 |
+
return output_probs
|
91 |
+
|
92 |
+
|
93 |
+
class TransformerCouplingBlock(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
channels,
|
97 |
+
hidden_channels,
|
98 |
+
filter_channels,
|
99 |
+
n_heads,
|
100 |
+
n_layers,
|
101 |
+
kernel_size,
|
102 |
+
p_dropout,
|
103 |
+
n_flows=4,
|
104 |
+
gin_channels=0,
|
105 |
+
share_parameter=False,
|
106 |
+
):
|
107 |
+
super().__init__()
|
108 |
+
self.channels = channels
|
109 |
+
self.hidden_channels = hidden_channels
|
110 |
+
self.kernel_size = kernel_size
|
111 |
+
self.n_layers = n_layers
|
112 |
+
self.n_flows = n_flows
|
113 |
+
self.gin_channels = gin_channels
|
114 |
+
|
115 |
+
self.flows = nn.ModuleList()
|
116 |
+
|
117 |
+
self.wn = (
|
118 |
+
attentions.FFT(
|
119 |
+
hidden_channels,
|
120 |
+
filter_channels,
|
121 |
+
n_heads,
|
122 |
+
n_layers,
|
123 |
+
kernel_size,
|
124 |
+
p_dropout,
|
125 |
+
isflow=True,
|
126 |
+
gin_channels=self.gin_channels,
|
127 |
+
)
|
128 |
+
if share_parameter
|
129 |
+
else None
|
130 |
+
)
|
131 |
+
|
132 |
+
for i in range(n_flows):
|
133 |
+
self.flows.append(
|
134 |
+
modules.TransformerCouplingLayer(
|
135 |
+
channels,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
n_layers,
|
139 |
+
n_heads,
|
140 |
+
p_dropout,
|
141 |
+
filter_channels,
|
142 |
+
mean_only=True,
|
143 |
+
wn_sharing_parameter=self.wn,
|
144 |
+
gin_channels=self.gin_channels,
|
145 |
+
)
|
146 |
+
)
|
147 |
+
self.flows.append(modules.Flip())
|
148 |
+
|
149 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
150 |
+
if not reverse:
|
151 |
+
for flow in self.flows:
|
152 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
+
else:
|
154 |
+
for flow in reversed(self.flows):
|
155 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
156 |
+
return x
|
157 |
+
|
158 |
+
|
159 |
+
class StochasticDurationPredictor(nn.Module):
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
in_channels,
|
163 |
+
filter_channels,
|
164 |
+
kernel_size,
|
165 |
+
p_dropout,
|
166 |
+
n_flows=4,
|
167 |
+
gin_channels=0,
|
168 |
+
):
|
169 |
+
super().__init__()
|
170 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
171 |
+
self.in_channels = in_channels
|
172 |
+
self.filter_channels = filter_channels
|
173 |
+
self.kernel_size = kernel_size
|
174 |
+
self.p_dropout = p_dropout
|
175 |
+
self.n_flows = n_flows
|
176 |
+
self.gin_channels = gin_channels
|
177 |
+
|
178 |
+
self.log_flow = modules.Log()
|
179 |
+
self.flows = nn.ModuleList()
|
180 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
181 |
+
for i in range(n_flows):
|
182 |
+
self.flows.append(
|
183 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
184 |
+
)
|
185 |
+
self.flows.append(modules.Flip())
|
186 |
+
|
187 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
188 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
189 |
+
self.post_convs = modules.DDSConv(
|
190 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
191 |
+
)
|
192 |
+
self.post_flows = nn.ModuleList()
|
193 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
194 |
+
for i in range(4):
|
195 |
+
self.post_flows.append(
|
196 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
197 |
+
)
|
198 |
+
self.post_flows.append(modules.Flip())
|
199 |
+
|
200 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
201 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
202 |
+
self.convs = modules.DDSConv(
|
203 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
204 |
+
)
|
205 |
+
if gin_channels != 0:
|
206 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
207 |
+
|
208 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
209 |
+
x = torch.detach(x)
|
210 |
+
x = self.pre(x)
|
211 |
+
if g is not None:
|
212 |
+
g = torch.detach(g)
|
213 |
+
x = x + self.cond(g)
|
214 |
+
x = self.convs(x, x_mask)
|
215 |
+
x = self.proj(x) * x_mask
|
216 |
+
|
217 |
+
if not reverse:
|
218 |
+
flows = self.flows
|
219 |
+
assert w is not None
|
220 |
+
|
221 |
+
logdet_tot_q = 0
|
222 |
+
h_w = self.post_pre(w)
|
223 |
+
h_w = self.post_convs(h_w, x_mask)
|
224 |
+
h_w = self.post_proj(h_w) * x_mask
|
225 |
+
e_q = (
|
226 |
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
227 |
+
* x_mask
|
228 |
+
)
|
229 |
+
z_q = e_q
|
230 |
+
for flow in self.post_flows:
|
231 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
232 |
+
logdet_tot_q += logdet_q
|
233 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
234 |
+
u = torch.sigmoid(z_u) * x_mask
|
235 |
+
z0 = (w - u) * x_mask
|
236 |
+
logdet_tot_q += torch.sum(
|
237 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
238 |
+
)
|
239 |
+
logq = (
|
240 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
241 |
+
- logdet_tot_q
|
242 |
+
)
|
243 |
+
|
244 |
+
logdet_tot = 0
|
245 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
246 |
+
logdet_tot += logdet
|
247 |
+
z = torch.cat([z0, z1], 1)
|
248 |
+
for flow in flows:
|
249 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
250 |
+
logdet_tot = logdet_tot + logdet
|
251 |
+
nll = (
|
252 |
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
253 |
+
- logdet_tot
|
254 |
+
)
|
255 |
+
return nll + logq # [b]
|
256 |
+
else:
|
257 |
+
flows = list(reversed(self.flows))
|
258 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
259 |
+
z = (
|
260 |
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
261 |
+
* noise_scale
|
262 |
+
)
|
263 |
+
for flow in flows:
|
264 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
265 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
266 |
+
logw = z0
|
267 |
+
return logw
|
268 |
+
|
269 |
+
|
270 |
+
class DurationPredictor(nn.Module):
|
271 |
+
def __init__(
|
272 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
273 |
+
):
|
274 |
+
super().__init__()
|
275 |
+
|
276 |
+
self.in_channels = in_channels
|
277 |
+
self.filter_channels = filter_channels
|
278 |
+
self.kernel_size = kernel_size
|
279 |
+
self.p_dropout = p_dropout
|
280 |
+
self.gin_channels = gin_channels
|
281 |
+
|
282 |
+
self.drop = nn.Dropout(p_dropout)
|
283 |
+
self.conv_1 = nn.Conv1d(
|
284 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
285 |
+
)
|
286 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
287 |
+
self.conv_2 = nn.Conv1d(
|
288 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
289 |
+
)
|
290 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
291 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
292 |
+
|
293 |
+
if gin_channels != 0:
|
294 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
295 |
+
|
296 |
+
def forward(self, x, x_mask, g=None):
|
297 |
+
x = torch.detach(x)
|
298 |
+
if g is not None:
|
299 |
+
g = torch.detach(g)
|
300 |
+
x = x + self.cond(g)
|
301 |
+
x = self.conv_1(x * x_mask)
|
302 |
+
x = torch.relu(x)
|
303 |
+
x = self.norm_1(x)
|
304 |
+
x = self.drop(x)
|
305 |
+
x = self.conv_2(x * x_mask)
|
306 |
+
x = torch.relu(x)
|
307 |
+
x = self.norm_2(x)
|
308 |
+
x = self.drop(x)
|
309 |
+
x = self.proj(x * x_mask)
|
310 |
+
return x * x_mask
|
311 |
+
|
312 |
+
|
313 |
+
class TextEncoder(nn.Module):
|
314 |
+
def __init__(
|
315 |
+
self,
|
316 |
+
n_vocab,
|
317 |
+
out_channels,
|
318 |
+
hidden_channels,
|
319 |
+
filter_channels,
|
320 |
+
n_heads,
|
321 |
+
n_layers,
|
322 |
+
kernel_size,
|
323 |
+
p_dropout,
|
324 |
+
gin_channels=0,
|
325 |
+
):
|
326 |
+
super().__init__()
|
327 |
+
self.n_vocab = n_vocab
|
328 |
+
self.out_channels = out_channels
|
329 |
+
self.hidden_channels = hidden_channels
|
330 |
+
self.filter_channels = filter_channels
|
331 |
+
self.n_heads = n_heads
|
332 |
+
self.n_layers = n_layers
|
333 |
+
self.kernel_size = kernel_size
|
334 |
+
self.p_dropout = p_dropout
|
335 |
+
self.gin_channels = gin_channels
|
336 |
+
self.emb = nn.Embedding(len(symbols), hidden_channels)
|
337 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
338 |
+
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
339 |
+
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
340 |
+
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
341 |
+
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
342 |
+
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
343 |
+
self.ja_bert_proj = nn.Conv1d(768, hidden_channels, 1)
|
344 |
+
|
345 |
+
self.encoder = attentions.Encoder(
|
346 |
+
hidden_channels,
|
347 |
+
filter_channels,
|
348 |
+
n_heads,
|
349 |
+
n_layers,
|
350 |
+
kernel_size,
|
351 |
+
p_dropout,
|
352 |
+
gin_channels=self.gin_channels,
|
353 |
+
)
|
354 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
355 |
+
|
356 |
+
def forward(self, x, x_lengths, tone, language, bert, ja_bert, g=None):
|
357 |
+
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
358 |
+
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
|
359 |
+
x = (
|
360 |
+
self.emb(x)
|
361 |
+
+ self.tone_emb(tone)
|
362 |
+
+ self.language_emb(language)
|
363 |
+
+ bert_emb
|
364 |
+
+ ja_bert_emb
|
365 |
+
) * math.sqrt(
|
366 |
+
self.hidden_channels
|
367 |
+
) # [b, t, h]
|
368 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
369 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
370 |
+
x.dtype
|
371 |
+
)
|
372 |
+
|
373 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
374 |
+
stats = self.proj(x) * x_mask
|
375 |
+
|
376 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
377 |
+
return x, m, logs, x_mask
|
378 |
+
|
379 |
+
|
380 |
+
class ResidualCouplingBlock(nn.Module):
|
381 |
+
def __init__(
|
382 |
+
self,
|
383 |
+
channels,
|
384 |
+
hidden_channels,
|
385 |
+
kernel_size,
|
386 |
+
dilation_rate,
|
387 |
+
n_layers,
|
388 |
+
n_flows=4,
|
389 |
+
gin_channels=0,
|
390 |
+
):
|
391 |
+
super().__init__()
|
392 |
+
self.channels = channels
|
393 |
+
self.hidden_channels = hidden_channels
|
394 |
+
self.kernel_size = kernel_size
|
395 |
+
self.dilation_rate = dilation_rate
|
396 |
+
self.n_layers = n_layers
|
397 |
+
self.n_flows = n_flows
|
398 |
+
self.gin_channels = gin_channels
|
399 |
+
|
400 |
+
self.flows = nn.ModuleList()
|
401 |
+
for i in range(n_flows):
|
402 |
+
self.flows.append(
|
403 |
+
modules.ResidualCouplingLayer(
|
404 |
+
channels,
|
405 |
+
hidden_channels,
|
406 |
+
kernel_size,
|
407 |
+
dilation_rate,
|
408 |
+
n_layers,
|
409 |
+
gin_channels=gin_channels,
|
410 |
+
mean_only=True,
|
411 |
+
)
|
412 |
+
)
|
413 |
+
self.flows.append(modules.Flip())
|
414 |
+
|
415 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
416 |
+
if not reverse:
|
417 |
+
for flow in self.flows:
|
418 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
419 |
+
else:
|
420 |
+
for flow in reversed(self.flows):
|
421 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
422 |
+
return x
|
423 |
+
|
424 |
+
|
425 |
+
class PosteriorEncoder(nn.Module):
|
426 |
+
def __init__(
|
427 |
+
self,
|
428 |
+
in_channels,
|
429 |
+
out_channels,
|
430 |
+
hidden_channels,
|
431 |
+
kernel_size,
|
432 |
+
dilation_rate,
|
433 |
+
n_layers,
|
434 |
+
gin_channels=0,
|
435 |
+
):
|
436 |
+
super().__init__()
|
437 |
+
self.in_channels = in_channels
|
438 |
+
self.out_channels = out_channels
|
439 |
+
self.hidden_channels = hidden_channels
|
440 |
+
self.kernel_size = kernel_size
|
441 |
+
self.dilation_rate = dilation_rate
|
442 |
+
self.n_layers = n_layers
|
443 |
+
self.gin_channels = gin_channels
|
444 |
+
|
445 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
446 |
+
self.enc = modules.WN(
|
447 |
+
hidden_channels,
|
448 |
+
kernel_size,
|
449 |
+
dilation_rate,
|
450 |
+
n_layers,
|
451 |
+
gin_channels=gin_channels,
|
452 |
+
)
|
453 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
454 |
+
|
455 |
+
def forward(self, x, x_lengths, g=None):
|
456 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
457 |
+
x.dtype
|
458 |
+
)
|
459 |
+
x = self.pre(x) * x_mask
|
460 |
+
x = self.enc(x, x_mask, g=g)
|
461 |
+
stats = self.proj(x) * x_mask
|
462 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
463 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
464 |
+
return z, m, logs, x_mask
|
465 |
+
|
466 |
+
|
467 |
+
class Generator(torch.nn.Module):
|
468 |
+
def __init__(
|
469 |
+
self,
|
470 |
+
initial_channel,
|
471 |
+
resblock,
|
472 |
+
resblock_kernel_sizes,
|
473 |
+
resblock_dilation_sizes,
|
474 |
+
upsample_rates,
|
475 |
+
upsample_initial_channel,
|
476 |
+
upsample_kernel_sizes,
|
477 |
+
gin_channels=0,
|
478 |
+
):
|
479 |
+
super(Generator, self).__init__()
|
480 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
481 |
+
self.num_upsamples = len(upsample_rates)
|
482 |
+
self.conv_pre = Conv1d(
|
483 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
484 |
+
)
|
485 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
486 |
+
|
487 |
+
self.ups = nn.ModuleList()
|
488 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
489 |
+
self.ups.append(
|
490 |
+
weight_norm(
|
491 |
+
ConvTranspose1d(
|
492 |
+
upsample_initial_channel // (2**i),
|
493 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
494 |
+
k,
|
495 |
+
u,
|
496 |
+
padding=(k - u) // 2,
|
497 |
+
)
|
498 |
+
)
|
499 |
+
)
|
500 |
+
|
501 |
+
self.resblocks = nn.ModuleList()
|
502 |
+
for i in range(len(self.ups)):
|
503 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
504 |
+
for j, (k, d) in enumerate(
|
505 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
506 |
+
):
|
507 |
+
self.resblocks.append(resblock(ch, k, d))
|
508 |
+
|
509 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
510 |
+
self.ups.apply(init_weights)
|
511 |
+
|
512 |
+
if gin_channels != 0:
|
513 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
514 |
+
|
515 |
+
def forward(self, x, g=None):
|
516 |
+
x = self.conv_pre(x)
|
517 |
+
if g is not None:
|
518 |
+
x = x + self.cond(g)
|
519 |
+
|
520 |
+
for i in range(self.num_upsamples):
|
521 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
522 |
+
x = self.ups[i](x)
|
523 |
+
xs = None
|
524 |
+
for j in range(self.num_kernels):
|
525 |
+
if xs is None:
|
526 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
527 |
+
else:
|
528 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
529 |
+
x = xs / self.num_kernels
|
530 |
+
x = F.leaky_relu(x)
|
531 |
+
x = self.conv_post(x)
|
532 |
+
x = torch.tanh(x)
|
533 |
+
|
534 |
+
return x
|
535 |
+
|
536 |
+
def remove_weight_norm(self):
|
537 |
+
print("Removing weight norm...")
|
538 |
+
for layer in self.ups:
|
539 |
+
remove_weight_norm(layer)
|
540 |
+
for layer in self.resblocks:
|
541 |
+
layer.remove_weight_norm()
|
542 |
+
|
543 |
+
|
544 |
+
class DiscriminatorP(torch.nn.Module):
|
545 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
546 |
+
super(DiscriminatorP, self).__init__()
|
547 |
+
self.period = period
|
548 |
+
self.use_spectral_norm = use_spectral_norm
|
549 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
550 |
+
self.convs = nn.ModuleList(
|
551 |
+
[
|
552 |
+
norm_f(
|
553 |
+
Conv2d(
|
554 |
+
1,
|
555 |
+
32,
|
556 |
+
(kernel_size, 1),
|
557 |
+
(stride, 1),
|
558 |
+
padding=(get_padding(kernel_size, 1), 0),
|
559 |
+
)
|
560 |
+
),
|
561 |
+
norm_f(
|
562 |
+
Conv2d(
|
563 |
+
32,
|
564 |
+
128,
|
565 |
+
(kernel_size, 1),
|
566 |
+
(stride, 1),
|
567 |
+
padding=(get_padding(kernel_size, 1), 0),
|
568 |
+
)
|
569 |
+
),
|
570 |
+
norm_f(
|
571 |
+
Conv2d(
|
572 |
+
128,
|
573 |
+
512,
|
574 |
+
(kernel_size, 1),
|
575 |
+
(stride, 1),
|
576 |
+
padding=(get_padding(kernel_size, 1), 0),
|
577 |
+
)
|
578 |
+
),
|
579 |
+
norm_f(
|
580 |
+
Conv2d(
|
581 |
+
512,
|
582 |
+
1024,
|
583 |
+
(kernel_size, 1),
|
584 |
+
(stride, 1),
|
585 |
+
padding=(get_padding(kernel_size, 1), 0),
|
586 |
+
)
|
587 |
+
),
|
588 |
+
norm_f(
|
589 |
+
Conv2d(
|
590 |
+
1024,
|
591 |
+
1024,
|
592 |
+
(kernel_size, 1),
|
593 |
+
1,
|
594 |
+
padding=(get_padding(kernel_size, 1), 0),
|
595 |
+
)
|
596 |
+
),
|
597 |
+
]
|
598 |
+
)
|
599 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
600 |
+
|
601 |
+
def forward(self, x):
|
602 |
+
fmap = []
|
603 |
+
|
604 |
+
# 1d to 2d
|
605 |
+
b, c, t = x.shape
|
606 |
+
if t % self.period != 0: # pad first
|
607 |
+
n_pad = self.period - (t % self.period)
|
608 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
609 |
+
t = t + n_pad
|
610 |
+
x = x.view(b, c, t // self.period, self.period)
|
611 |
+
|
612 |
+
for layer in self.convs:
|
613 |
+
x = layer(x)
|
614 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
615 |
+
fmap.append(x)
|
616 |
+
x = self.conv_post(x)
|
617 |
+
fmap.append(x)
|
618 |
+
x = torch.flatten(x, 1, -1)
|
619 |
+
|
620 |
+
return x, fmap
|
621 |
+
|
622 |
+
|
623 |
+
class DiscriminatorS(torch.nn.Module):
|
624 |
+
def __init__(self, use_spectral_norm=False):
|
625 |
+
super(DiscriminatorS, self).__init__()
|
626 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
627 |
+
self.convs = nn.ModuleList(
|
628 |
+
[
|
629 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
630 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
631 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
632 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
633 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
634 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
635 |
+
]
|
636 |
+
)
|
637 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
638 |
+
|
639 |
+
def forward(self, x):
|
640 |
+
fmap = []
|
641 |
+
|
642 |
+
for layer in self.convs:
|
643 |
+
x = layer(x)
|
644 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
645 |
+
fmap.append(x)
|
646 |
+
x = self.conv_post(x)
|
647 |
+
fmap.append(x)
|
648 |
+
x = torch.flatten(x, 1, -1)
|
649 |
+
|
650 |
+
return x, fmap
|
651 |
+
|
652 |
+
|
653 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
654 |
+
def __init__(self, use_spectral_norm=False):
|
655 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
656 |
+
periods = [2, 3, 5, 7, 11]
|
657 |
+
|
658 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
659 |
+
discs = discs + [
|
660 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
661 |
+
]
|
662 |
+
self.discriminators = nn.ModuleList(discs)
|
663 |
+
|
664 |
+
def forward(self, y, y_hat):
|
665 |
+
y_d_rs = []
|
666 |
+
y_d_gs = []
|
667 |
+
fmap_rs = []
|
668 |
+
fmap_gs = []
|
669 |
+
for i, d in enumerate(self.discriminators):
|
670 |
+
y_d_r, fmap_r = d(y)
|
671 |
+
y_d_g, fmap_g = d(y_hat)
|
672 |
+
y_d_rs.append(y_d_r)
|
673 |
+
y_d_gs.append(y_d_g)
|
674 |
+
fmap_rs.append(fmap_r)
|
675 |
+
fmap_gs.append(fmap_g)
|
676 |
+
|
677 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
678 |
+
|
679 |
+
|
680 |
+
class ReferenceEncoder(nn.Module):
|
681 |
+
"""
|
682 |
+
inputs --- [N, Ty/r, n_mels*r] mels
|
683 |
+
outputs --- [N, ref_enc_gru_size]
|
684 |
+
"""
|
685 |
+
|
686 |
+
def __init__(self, spec_channels, gin_channels=0):
|
687 |
+
super().__init__()
|
688 |
+
self.spec_channels = spec_channels
|
689 |
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
690 |
+
K = len(ref_enc_filters)
|
691 |
+
filters = [1] + ref_enc_filters
|
692 |
+
convs = [
|
693 |
+
weight_norm(
|
694 |
+
nn.Conv2d(
|
695 |
+
in_channels=filters[i],
|
696 |
+
out_channels=filters[i + 1],
|
697 |
+
kernel_size=(3, 3),
|
698 |
+
stride=(2, 2),
|
699 |
+
padding=(1, 1),
|
700 |
+
)
|
701 |
+
)
|
702 |
+
for i in range(K)
|
703 |
+
]
|
704 |
+
self.convs = nn.ModuleList(convs)
|
705 |
+
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
706 |
+
|
707 |
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
708 |
+
self.gru = nn.GRU(
|
709 |
+
input_size=ref_enc_filters[-1] * out_channels,
|
710 |
+
hidden_size=256 // 2,
|
711 |
+
batch_first=True,
|
712 |
+
)
|
713 |
+
self.proj = nn.Linear(128, gin_channels)
|
714 |
+
|
715 |
+
def forward(self, inputs, mask=None):
|
716 |
+
N = inputs.size(0)
|
717 |
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
718 |
+
for conv in self.convs:
|
719 |
+
out = conv(out)
|
720 |
+
# out = wn(out)
|
721 |
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
722 |
+
|
723 |
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
724 |
+
T = out.size(1)
|
725 |
+
N = out.size(0)
|
726 |
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
727 |
+
|
728 |
+
self.gru.flatten_parameters()
|
729 |
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
730 |
+
|
731 |
+
return self.proj(out.squeeze(0))
|
732 |
+
|
733 |
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
734 |
+
for i in range(n_convs):
|
735 |
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
736 |
+
return L
|
737 |
+
|
738 |
+
|
739 |
+
class SynthesizerTrn(nn.Module):
|
740 |
+
"""
|
741 |
+
Synthesizer for Training
|
742 |
+
"""
|
743 |
+
|
744 |
+
def __init__(
|
745 |
+
self,
|
746 |
+
n_vocab,
|
747 |
+
spec_channels,
|
748 |
+
segment_size,
|
749 |
+
inter_channels,
|
750 |
+
hidden_channels,
|
751 |
+
filter_channels,
|
752 |
+
n_heads,
|
753 |
+
n_layers,
|
754 |
+
kernel_size,
|
755 |
+
p_dropout,
|
756 |
+
resblock,
|
757 |
+
resblock_kernel_sizes,
|
758 |
+
resblock_dilation_sizes,
|
759 |
+
upsample_rates,
|
760 |
+
upsample_initial_channel,
|
761 |
+
upsample_kernel_sizes,
|
762 |
+
n_speakers=256,
|
763 |
+
gin_channels=256,
|
764 |
+
use_sdp=True,
|
765 |
+
n_flow_layer=4,
|
766 |
+
n_layers_trans_flow=6,
|
767 |
+
flow_share_parameter=False,
|
768 |
+
use_transformer_flow=True,
|
769 |
+
**kwargs
|
770 |
+
):
|
771 |
+
super().__init__()
|
772 |
+
self.n_vocab = n_vocab
|
773 |
+
self.spec_channels = spec_channels
|
774 |
+
self.inter_channels = inter_channels
|
775 |
+
self.hidden_channels = hidden_channels
|
776 |
+
self.filter_channels = filter_channels
|
777 |
+
self.n_heads = n_heads
|
778 |
+
self.n_layers = n_layers
|
779 |
+
self.kernel_size = kernel_size
|
780 |
+
self.p_dropout = p_dropout
|
781 |
+
self.resblock = resblock
|
782 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
783 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
784 |
+
self.upsample_rates = upsample_rates
|
785 |
+
self.upsample_initial_channel = upsample_initial_channel
|
786 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
787 |
+
self.segment_size = segment_size
|
788 |
+
self.n_speakers = n_speakers
|
789 |
+
self.gin_channels = gin_channels
|
790 |
+
self.n_layers_trans_flow = n_layers_trans_flow
|
791 |
+
self.use_spk_conditioned_encoder = kwargs.get(
|
792 |
+
"use_spk_conditioned_encoder", True
|
793 |
+
)
|
794 |
+
self.use_sdp = use_sdp
|
795 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
796 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
797 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
798 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
799 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
800 |
+
self.enc_gin_channels = gin_channels
|
801 |
+
self.enc_p = TextEncoder(
|
802 |
+
n_vocab,
|
803 |
+
inter_channels,
|
804 |
+
hidden_channels,
|
805 |
+
filter_channels,
|
806 |
+
n_heads,
|
807 |
+
n_layers,
|
808 |
+
kernel_size,
|
809 |
+
p_dropout,
|
810 |
+
gin_channels=self.enc_gin_channels,
|
811 |
+
)
|
812 |
+
self.dec = Generator(
|
813 |
+
inter_channels,
|
814 |
+
resblock,
|
815 |
+
resblock_kernel_sizes,
|
816 |
+
resblock_dilation_sizes,
|
817 |
+
upsample_rates,
|
818 |
+
upsample_initial_channel,
|
819 |
+
upsample_kernel_sizes,
|
820 |
+
gin_channels=gin_channels,
|
821 |
+
)
|
822 |
+
self.enc_q = PosteriorEncoder(
|
823 |
+
spec_channels,
|
824 |
+
inter_channels,
|
825 |
+
hidden_channels,
|
826 |
+
5,
|
827 |
+
1,
|
828 |
+
16,
|
829 |
+
gin_channels=gin_channels,
|
830 |
+
)
|
831 |
+
if use_transformer_flow:
|
832 |
+
self.flow = TransformerCouplingBlock(
|
833 |
+
inter_channels,
|
834 |
+
hidden_channels,
|
835 |
+
filter_channels,
|
836 |
+
n_heads,
|
837 |
+
n_layers_trans_flow,
|
838 |
+
5,
|
839 |
+
p_dropout,
|
840 |
+
n_flow_layer,
|
841 |
+
gin_channels=gin_channels,
|
842 |
+
share_parameter=flow_share_parameter,
|
843 |
+
)
|
844 |
+
else:
|
845 |
+
self.flow = ResidualCouplingBlock(
|
846 |
+
inter_channels,
|
847 |
+
hidden_channels,
|
848 |
+
5,
|
849 |
+
1,
|
850 |
+
n_flow_layer,
|
851 |
+
gin_channels=gin_channels,
|
852 |
+
)
|
853 |
+
self.sdp = StochasticDurationPredictor(
|
854 |
+
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
855 |
+
)
|
856 |
+
self.dp = DurationPredictor(
|
857 |
+
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
858 |
+
)
|
859 |
+
|
860 |
+
if n_speakers > 1:
|
861 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
862 |
+
else:
|
863 |
+
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
|
864 |
+
|
865 |
+
def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert, ja_bert):
|
866 |
+
if self.n_speakers > 0:
|
867 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
868 |
+
else:
|
869 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
870 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
871 |
+
x, x_lengths, tone, language, bert, ja_bert, g=g
|
872 |
+
)
|
873 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
874 |
+
z_p = self.flow(z, y_mask, g=g)
|
875 |
+
|
876 |
+
with torch.no_grad():
|
877 |
+
# negative cross-entropy
|
878 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
879 |
+
neg_cent1 = torch.sum(
|
880 |
+
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
881 |
+
) # [b, 1, t_s]
|
882 |
+
neg_cent2 = torch.matmul(
|
883 |
+
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
884 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
885 |
+
neg_cent3 = torch.matmul(
|
886 |
+
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
887 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
888 |
+
neg_cent4 = torch.sum(
|
889 |
+
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
890 |
+
) # [b, 1, t_s]
|
891 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
892 |
+
if self.use_noise_scaled_mas:
|
893 |
+
epsilon = (
|
894 |
+
torch.std(neg_cent)
|
895 |
+
* torch.randn_like(neg_cent)
|
896 |
+
* self.current_mas_noise_scale
|
897 |
+
)
|
898 |
+
neg_cent = neg_cent + epsilon
|
899 |
+
|
900 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
901 |
+
attn = (
|
902 |
+
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
903 |
+
.unsqueeze(1)
|
904 |
+
.detach()
|
905 |
+
)
|
906 |
+
|
907 |
+
w = attn.sum(2)
|
908 |
+
|
909 |
+
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
910 |
+
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
911 |
+
|
912 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
913 |
+
logw = self.dp(x, x_mask, g=g)
|
914 |
+
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
915 |
+
x_mask
|
916 |
+
) # for averaging
|
917 |
+
|
918 |
+
l_length = l_length_dp + l_length_sdp
|
919 |
+
|
920 |
+
# expand prior
|
921 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
922 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
923 |
+
|
924 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
925 |
+
z, y_lengths, self.segment_size
|
926 |
+
)
|
927 |
+
o = self.dec(z_slice, g=g)
|
928 |
+
return (
|
929 |
+
o,
|
930 |
+
l_length,
|
931 |
+
attn,
|
932 |
+
ids_slice,
|
933 |
+
x_mask,
|
934 |
+
y_mask,
|
935 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
936 |
+
(x, logw, logw_),
|
937 |
+
)
|
938 |
+
|
939 |
+
def infer(
|
940 |
+
self,
|
941 |
+
x,
|
942 |
+
x_lengths,
|
943 |
+
sid,
|
944 |
+
tone,
|
945 |
+
language,
|
946 |
+
bert,
|
947 |
+
ja_bert,
|
948 |
+
noise_scale=0.667,
|
949 |
+
length_scale=1,
|
950 |
+
noise_scale_w=0.8,
|
951 |
+
max_len=None,
|
952 |
+
sdp_ratio=0,
|
953 |
+
y=None,
|
954 |
+
):
|
955 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
956 |
+
# g = self.gst(y)
|
957 |
+
if self.n_speakers > 0:
|
958 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
959 |
+
else:
|
960 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
961 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
962 |
+
x, x_lengths, tone, language, bert, ja_bert, g=g
|
963 |
+
)
|
964 |
+
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
965 |
+
sdp_ratio
|
966 |
+
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
967 |
+
w = torch.exp(logw) * x_mask * length_scale
|
968 |
+
w_ceil = torch.ceil(w)
|
969 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
970 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
971 |
+
x_mask.dtype
|
972 |
+
)
|
973 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
974 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
975 |
+
|
976 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
977 |
+
1, 2
|
978 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
979 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
980 |
+
1, 2
|
981 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
982 |
+
|
983 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
984 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
985 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
986 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
modules.py
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
from attentions import Encoder
|
13 |
+
|
14 |
+
LRELU_SLOPE = 0.1
|
15 |
+
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-5):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = x.transpose(1, -1)
|
28 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
29 |
+
return x.transpose(1, -1)
|
30 |
+
|
31 |
+
|
32 |
+
class ConvReluNorm(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_channels,
|
36 |
+
hidden_channels,
|
37 |
+
out_channels,
|
38 |
+
kernel_size,
|
39 |
+
n_layers,
|
40 |
+
p_dropout,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
self.in_channels = in_channels
|
44 |
+
self.hidden_channels = hidden_channels
|
45 |
+
self.out_channels = out_channels
|
46 |
+
self.kernel_size = kernel_size
|
47 |
+
self.n_layers = n_layers
|
48 |
+
self.p_dropout = p_dropout
|
49 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
50 |
+
|
51 |
+
self.conv_layers = nn.ModuleList()
|
52 |
+
self.norm_layers = nn.ModuleList()
|
53 |
+
self.conv_layers.append(
|
54 |
+
nn.Conv1d(
|
55 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
56 |
+
)
|
57 |
+
)
|
58 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
59 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
60 |
+
for _ in range(n_layers - 1):
|
61 |
+
self.conv_layers.append(
|
62 |
+
nn.Conv1d(
|
63 |
+
hidden_channels,
|
64 |
+
hidden_channels,
|
65 |
+
kernel_size,
|
66 |
+
padding=kernel_size // 2,
|
67 |
+
)
|
68 |
+
)
|
69 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
70 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
71 |
+
self.proj.weight.data.zero_()
|
72 |
+
self.proj.bias.data.zero_()
|
73 |
+
|
74 |
+
def forward(self, x, x_mask):
|
75 |
+
x_org = x
|
76 |
+
for i in range(self.n_layers):
|
77 |
+
x = self.conv_layers[i](x * x_mask)
|
78 |
+
x = self.norm_layers[i](x)
|
79 |
+
x = self.relu_drop(x)
|
80 |
+
x = x_org + self.proj(x)
|
81 |
+
return x * x_mask
|
82 |
+
|
83 |
+
|
84 |
+
class DDSConv(nn.Module):
|
85 |
+
"""
|
86 |
+
Dialted and Depth-Separable Convolution
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
90 |
+
super().__init__()
|
91 |
+
self.channels = channels
|
92 |
+
self.kernel_size = kernel_size
|
93 |
+
self.n_layers = n_layers
|
94 |
+
self.p_dropout = p_dropout
|
95 |
+
|
96 |
+
self.drop = nn.Dropout(p_dropout)
|
97 |
+
self.convs_sep = nn.ModuleList()
|
98 |
+
self.convs_1x1 = nn.ModuleList()
|
99 |
+
self.norms_1 = nn.ModuleList()
|
100 |
+
self.norms_2 = nn.ModuleList()
|
101 |
+
for i in range(n_layers):
|
102 |
+
dilation = kernel_size**i
|
103 |
+
padding = (kernel_size * dilation - dilation) // 2
|
104 |
+
self.convs_sep.append(
|
105 |
+
nn.Conv1d(
|
106 |
+
channels,
|
107 |
+
channels,
|
108 |
+
kernel_size,
|
109 |
+
groups=channels,
|
110 |
+
dilation=dilation,
|
111 |
+
padding=padding,
|
112 |
+
)
|
113 |
+
)
|
114 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
115 |
+
self.norms_1.append(LayerNorm(channels))
|
116 |
+
self.norms_2.append(LayerNorm(channels))
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
if g is not None:
|
120 |
+
x = x + g
|
121 |
+
for i in range(self.n_layers):
|
122 |
+
y = self.convs_sep[i](x * x_mask)
|
123 |
+
y = self.norms_1[i](y)
|
124 |
+
y = F.gelu(y)
|
125 |
+
y = self.convs_1x1[i](y)
|
126 |
+
y = self.norms_2[i](y)
|
127 |
+
y = F.gelu(y)
|
128 |
+
y = self.drop(y)
|
129 |
+
x = x + y
|
130 |
+
return x * x_mask
|
131 |
+
|
132 |
+
|
133 |
+
class WN(torch.nn.Module):
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
dilation_rate,
|
139 |
+
n_layers,
|
140 |
+
gin_channels=0,
|
141 |
+
p_dropout=0,
|
142 |
+
):
|
143 |
+
super(WN, self).__init__()
|
144 |
+
assert kernel_size % 2 == 1
|
145 |
+
self.hidden_channels = hidden_channels
|
146 |
+
self.kernel_size = (kernel_size,)
|
147 |
+
self.dilation_rate = dilation_rate
|
148 |
+
self.n_layers = n_layers
|
149 |
+
self.gin_channels = gin_channels
|
150 |
+
self.p_dropout = p_dropout
|
151 |
+
|
152 |
+
self.in_layers = torch.nn.ModuleList()
|
153 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
154 |
+
self.drop = nn.Dropout(p_dropout)
|
155 |
+
|
156 |
+
if gin_channels != 0:
|
157 |
+
cond_layer = torch.nn.Conv1d(
|
158 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
159 |
+
)
|
160 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
161 |
+
|
162 |
+
for i in range(n_layers):
|
163 |
+
dilation = dilation_rate**i
|
164 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
165 |
+
in_layer = torch.nn.Conv1d(
|
166 |
+
hidden_channels,
|
167 |
+
2 * hidden_channels,
|
168 |
+
kernel_size,
|
169 |
+
dilation=dilation,
|
170 |
+
padding=padding,
|
171 |
+
)
|
172 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
173 |
+
self.in_layers.append(in_layer)
|
174 |
+
|
175 |
+
# last one is not necessary
|
176 |
+
if i < n_layers - 1:
|
177 |
+
res_skip_channels = 2 * hidden_channels
|
178 |
+
else:
|
179 |
+
res_skip_channels = hidden_channels
|
180 |
+
|
181 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
182 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
183 |
+
self.res_skip_layers.append(res_skip_layer)
|
184 |
+
|
185 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
186 |
+
output = torch.zeros_like(x)
|
187 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
188 |
+
|
189 |
+
if g is not None:
|
190 |
+
g = self.cond_layer(g)
|
191 |
+
|
192 |
+
for i in range(self.n_layers):
|
193 |
+
x_in = self.in_layers[i](x)
|
194 |
+
if g is not None:
|
195 |
+
cond_offset = i * 2 * self.hidden_channels
|
196 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
197 |
+
else:
|
198 |
+
g_l = torch.zeros_like(x_in)
|
199 |
+
|
200 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
201 |
+
acts = self.drop(acts)
|
202 |
+
|
203 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
204 |
+
if i < self.n_layers - 1:
|
205 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
206 |
+
x = (x + res_acts) * x_mask
|
207 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
208 |
+
else:
|
209 |
+
output = output + res_skip_acts
|
210 |
+
return output * x_mask
|
211 |
+
|
212 |
+
def remove_weight_norm(self):
|
213 |
+
if self.gin_channels != 0:
|
214 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
215 |
+
for l in self.in_layers:
|
216 |
+
torch.nn.utils.remove_weight_norm(l)
|
217 |
+
for l in self.res_skip_layers:
|
218 |
+
torch.nn.utils.remove_weight_norm(l)
|
219 |
+
|
220 |
+
|
221 |
+
class ResBlock1(torch.nn.Module):
|
222 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
223 |
+
super(ResBlock1, self).__init__()
|
224 |
+
self.convs1 = nn.ModuleList(
|
225 |
+
[
|
226 |
+
weight_norm(
|
227 |
+
Conv1d(
|
228 |
+
channels,
|
229 |
+
channels,
|
230 |
+
kernel_size,
|
231 |
+
1,
|
232 |
+
dilation=dilation[0],
|
233 |
+
padding=get_padding(kernel_size, dilation[0]),
|
234 |
+
)
|
235 |
+
),
|
236 |
+
weight_norm(
|
237 |
+
Conv1d(
|
238 |
+
channels,
|
239 |
+
channels,
|
240 |
+
kernel_size,
|
241 |
+
1,
|
242 |
+
dilation=dilation[1],
|
243 |
+
padding=get_padding(kernel_size, dilation[1]),
|
244 |
+
)
|
245 |
+
),
|
246 |
+
weight_norm(
|
247 |
+
Conv1d(
|
248 |
+
channels,
|
249 |
+
channels,
|
250 |
+
kernel_size,
|
251 |
+
1,
|
252 |
+
dilation=dilation[2],
|
253 |
+
padding=get_padding(kernel_size, dilation[2]),
|
254 |
+
)
|
255 |
+
),
|
256 |
+
]
|
257 |
+
)
|
258 |
+
self.convs1.apply(init_weights)
|
259 |
+
|
260 |
+
self.convs2 = nn.ModuleList(
|
261 |
+
[
|
262 |
+
weight_norm(
|
263 |
+
Conv1d(
|
264 |
+
channels,
|
265 |
+
channels,
|
266 |
+
kernel_size,
|
267 |
+
1,
|
268 |
+
dilation=1,
|
269 |
+
padding=get_padding(kernel_size, 1),
|
270 |
+
)
|
271 |
+
),
|
272 |
+
weight_norm(
|
273 |
+
Conv1d(
|
274 |
+
channels,
|
275 |
+
channels,
|
276 |
+
kernel_size,
|
277 |
+
1,
|
278 |
+
dilation=1,
|
279 |
+
padding=get_padding(kernel_size, 1),
|
280 |
+
)
|
281 |
+
),
|
282 |
+
weight_norm(
|
283 |
+
Conv1d(
|
284 |
+
channels,
|
285 |
+
channels,
|
286 |
+
kernel_size,
|
287 |
+
1,
|
288 |
+
dilation=1,
|
289 |
+
padding=get_padding(kernel_size, 1),
|
290 |
+
)
|
291 |
+
),
|
292 |
+
]
|
293 |
+
)
|
294 |
+
self.convs2.apply(init_weights)
|
295 |
+
|
296 |
+
def forward(self, x, x_mask=None):
|
297 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
298 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
299 |
+
if x_mask is not None:
|
300 |
+
xt = xt * x_mask
|
301 |
+
xt = c1(xt)
|
302 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
303 |
+
if x_mask is not None:
|
304 |
+
xt = xt * x_mask
|
305 |
+
xt = c2(xt)
|
306 |
+
x = xt + x
|
307 |
+
if x_mask is not None:
|
308 |
+
x = x * x_mask
|
309 |
+
return x
|
310 |
+
|
311 |
+
def remove_weight_norm(self):
|
312 |
+
for l in self.convs1:
|
313 |
+
remove_weight_norm(l)
|
314 |
+
for l in self.convs2:
|
315 |
+
remove_weight_norm(l)
|
316 |
+
|
317 |
+
|
318 |
+
class ResBlock2(torch.nn.Module):
|
319 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
320 |
+
super(ResBlock2, self).__init__()
|
321 |
+
self.convs = nn.ModuleList(
|
322 |
+
[
|
323 |
+
weight_norm(
|
324 |
+
Conv1d(
|
325 |
+
channels,
|
326 |
+
channels,
|
327 |
+
kernel_size,
|
328 |
+
1,
|
329 |
+
dilation=dilation[0],
|
330 |
+
padding=get_padding(kernel_size, dilation[0]),
|
331 |
+
)
|
332 |
+
),
|
333 |
+
weight_norm(
|
334 |
+
Conv1d(
|
335 |
+
channels,
|
336 |
+
channels,
|
337 |
+
kernel_size,
|
338 |
+
1,
|
339 |
+
dilation=dilation[1],
|
340 |
+
padding=get_padding(kernel_size, dilation[1]),
|
341 |
+
)
|
342 |
+
),
|
343 |
+
]
|
344 |
+
)
|
345 |
+
self.convs.apply(init_weights)
|
346 |
+
|
347 |
+
def forward(self, x, x_mask=None):
|
348 |
+
for c in self.convs:
|
349 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
350 |
+
if x_mask is not None:
|
351 |
+
xt = xt * x_mask
|
352 |
+
xt = c(xt)
|
353 |
+
x = xt + x
|
354 |
+
if x_mask is not None:
|
355 |
+
x = x * x_mask
|
356 |
+
return x
|
357 |
+
|
358 |
+
def remove_weight_norm(self):
|
359 |
+
for l in self.convs:
|
360 |
+
remove_weight_norm(l)
|
361 |
+
|
362 |
+
|
363 |
+
class Log(nn.Module):
|
364 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
365 |
+
if not reverse:
|
366 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
367 |
+
logdet = torch.sum(-y, [1, 2])
|
368 |
+
return y, logdet
|
369 |
+
else:
|
370 |
+
x = torch.exp(x) * x_mask
|
371 |
+
return x
|
372 |
+
|
373 |
+
|
374 |
+
class Flip(nn.Module):
|
375 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
376 |
+
x = torch.flip(x, [1])
|
377 |
+
if not reverse:
|
378 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
379 |
+
return x, logdet
|
380 |
+
else:
|
381 |
+
return x
|
382 |
+
|
383 |
+
|
384 |
+
class ElementwiseAffine(nn.Module):
|
385 |
+
def __init__(self, channels):
|
386 |
+
super().__init__()
|
387 |
+
self.channels = channels
|
388 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
389 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
390 |
+
|
391 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
392 |
+
if not reverse:
|
393 |
+
y = self.m + torch.exp(self.logs) * x
|
394 |
+
y = y * x_mask
|
395 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
396 |
+
return y, logdet
|
397 |
+
else:
|
398 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
399 |
+
return x
|
400 |
+
|
401 |
+
|
402 |
+
class ResidualCouplingLayer(nn.Module):
|
403 |
+
def __init__(
|
404 |
+
self,
|
405 |
+
channels,
|
406 |
+
hidden_channels,
|
407 |
+
kernel_size,
|
408 |
+
dilation_rate,
|
409 |
+
n_layers,
|
410 |
+
p_dropout=0,
|
411 |
+
gin_channels=0,
|
412 |
+
mean_only=False,
|
413 |
+
):
|
414 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
415 |
+
super().__init__()
|
416 |
+
self.channels = channels
|
417 |
+
self.hidden_channels = hidden_channels
|
418 |
+
self.kernel_size = kernel_size
|
419 |
+
self.dilation_rate = dilation_rate
|
420 |
+
self.n_layers = n_layers
|
421 |
+
self.half_channels = channels // 2
|
422 |
+
self.mean_only = mean_only
|
423 |
+
|
424 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
425 |
+
self.enc = WN(
|
426 |
+
hidden_channels,
|
427 |
+
kernel_size,
|
428 |
+
dilation_rate,
|
429 |
+
n_layers,
|
430 |
+
p_dropout=p_dropout,
|
431 |
+
gin_channels=gin_channels,
|
432 |
+
)
|
433 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
434 |
+
self.post.weight.data.zero_()
|
435 |
+
self.post.bias.data.zero_()
|
436 |
+
|
437 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
438 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
439 |
+
h = self.pre(x0) * x_mask
|
440 |
+
h = self.enc(h, x_mask, g=g)
|
441 |
+
stats = self.post(h) * x_mask
|
442 |
+
if not self.mean_only:
|
443 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
444 |
+
else:
|
445 |
+
m = stats
|
446 |
+
logs = torch.zeros_like(m)
|
447 |
+
|
448 |
+
if not reverse:
|
449 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
450 |
+
x = torch.cat([x0, x1], 1)
|
451 |
+
logdet = torch.sum(logs, [1, 2])
|
452 |
+
return x, logdet
|
453 |
+
else:
|
454 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
455 |
+
x = torch.cat([x0, x1], 1)
|
456 |
+
return x
|
457 |
+
|
458 |
+
|
459 |
+
class ConvFlow(nn.Module):
|
460 |
+
def __init__(
|
461 |
+
self,
|
462 |
+
in_channels,
|
463 |
+
filter_channels,
|
464 |
+
kernel_size,
|
465 |
+
n_layers,
|
466 |
+
num_bins=10,
|
467 |
+
tail_bound=5.0,
|
468 |
+
):
|
469 |
+
super().__init__()
|
470 |
+
self.in_channels = in_channels
|
471 |
+
self.filter_channels = filter_channels
|
472 |
+
self.kernel_size = kernel_size
|
473 |
+
self.n_layers = n_layers
|
474 |
+
self.num_bins = num_bins
|
475 |
+
self.tail_bound = tail_bound
|
476 |
+
self.half_channels = in_channels // 2
|
477 |
+
|
478 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
479 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
480 |
+
self.proj = nn.Conv1d(
|
481 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
482 |
+
)
|
483 |
+
self.proj.weight.data.zero_()
|
484 |
+
self.proj.bias.data.zero_()
|
485 |
+
|
486 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
487 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
488 |
+
h = self.pre(x0)
|
489 |
+
h = self.convs(h, x_mask, g=g)
|
490 |
+
h = self.proj(h) * x_mask
|
491 |
+
|
492 |
+
b, c, t = x0.shape
|
493 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
494 |
+
|
495 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
496 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
497 |
+
self.filter_channels
|
498 |
+
)
|
499 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
500 |
+
|
501 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
502 |
+
x1,
|
503 |
+
unnormalized_widths,
|
504 |
+
unnormalized_heights,
|
505 |
+
unnormalized_derivatives,
|
506 |
+
inverse=reverse,
|
507 |
+
tails="linear",
|
508 |
+
tail_bound=self.tail_bound,
|
509 |
+
)
|
510 |
+
|
511 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
512 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
513 |
+
if not reverse:
|
514 |
+
return x, logdet
|
515 |
+
else:
|
516 |
+
return x
|
517 |
+
|
518 |
+
|
519 |
+
class TransformerCouplingLayer(nn.Module):
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
channels,
|
523 |
+
hidden_channels,
|
524 |
+
kernel_size,
|
525 |
+
n_layers,
|
526 |
+
n_heads,
|
527 |
+
p_dropout=0,
|
528 |
+
filter_channels=0,
|
529 |
+
mean_only=False,
|
530 |
+
wn_sharing_parameter=None,
|
531 |
+
gin_channels=0,
|
532 |
+
):
|
533 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
534 |
+
super().__init__()
|
535 |
+
self.channels = channels
|
536 |
+
self.hidden_channels = hidden_channels
|
537 |
+
self.kernel_size = kernel_size
|
538 |
+
self.n_layers = n_layers
|
539 |
+
self.half_channels = channels // 2
|
540 |
+
self.mean_only = mean_only
|
541 |
+
|
542 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
543 |
+
self.enc = (
|
544 |
+
Encoder(
|
545 |
+
hidden_channels,
|
546 |
+
filter_channels,
|
547 |
+
n_heads,
|
548 |
+
n_layers,
|
549 |
+
kernel_size,
|
550 |
+
p_dropout,
|
551 |
+
isflow=True,
|
552 |
+
gin_channels=gin_channels,
|
553 |
+
)
|
554 |
+
if wn_sharing_parameter is None
|
555 |
+
else wn_sharing_parameter
|
556 |
+
)
|
557 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
558 |
+
self.post.weight.data.zero_()
|
559 |
+
self.post.bias.data.zero_()
|
560 |
+
|
561 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
562 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
563 |
+
h = self.pre(x0) * x_mask
|
564 |
+
h = self.enc(h, x_mask, g=g)
|
565 |
+
stats = self.post(h) * x_mask
|
566 |
+
if not self.mean_only:
|
567 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
568 |
+
else:
|
569 |
+
m = stats
|
570 |
+
logs = torch.zeros_like(m)
|
571 |
+
|
572 |
+
if not reverse:
|
573 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
574 |
+
x = torch.cat([x0, x1], 1)
|
575 |
+
logdet = torch.sum(logs, [1, 2])
|
576 |
+
return x, logdet
|
577 |
+
else:
|
578 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
579 |
+
x = torch.cat([x0, x1], 1)
|
580 |
+
return x
|
581 |
+
|
582 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
583 |
+
x1,
|
584 |
+
unnormalized_widths,
|
585 |
+
unnormalized_heights,
|
586 |
+
unnormalized_derivatives,
|
587 |
+
inverse=reverse,
|
588 |
+
tails="linear",
|
589 |
+
tail_bound=self.tail_bound,
|
590 |
+
)
|
591 |
+
|
592 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
593 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
594 |
+
if not reverse:
|
595 |
+
return x, logdet
|
596 |
+
else:
|
597 |
+
return x
|
monotonic_align/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import zeros, int32, float32
|
2 |
+
from torch import from_numpy
|
3 |
+
|
4 |
+
from .core import maximum_path_jit
|
5 |
+
|
6 |
+
|
7 |
+
def maximum_path(neg_cent, mask):
|
8 |
+
device = neg_cent.device
|
9 |
+
dtype = neg_cent.dtype
|
10 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(float32)
|
11 |
+
path = zeros(neg_cent.shape, dtype=int32)
|
12 |
+
|
13 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
|
14 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
|
15 |
+
maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
|
16 |
+
return from_numpy(path).to(device=device, dtype=dtype)
|
monotonic_align/core.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numba
|
2 |
+
|
3 |
+
|
4 |
+
@numba.jit(
|
5 |
+
numba.void(
|
6 |
+
numba.int32[:, :, ::1],
|
7 |
+
numba.float32[:, :, ::1],
|
8 |
+
numba.int32[::1],
|
9 |
+
numba.int32[::1],
|
10 |
+
),
|
11 |
+
nopython=True,
|
12 |
+
nogil=True,
|
13 |
+
)
|
14 |
+
def maximum_path_jit(paths, values, t_ys, t_xs):
|
15 |
+
b = paths.shape[0]
|
16 |
+
max_neg_val = -1e9
|
17 |
+
for i in range(int(b)):
|
18 |
+
path = paths[i]
|
19 |
+
value = values[i]
|
20 |
+
t_y = t_ys[i]
|
21 |
+
t_x = t_xs[i]
|
22 |
+
|
23 |
+
v_prev = v_cur = 0.0
|
24 |
+
index = t_x - 1
|
25 |
+
|
26 |
+
for y in range(t_y):
|
27 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
28 |
+
if x == y:
|
29 |
+
v_cur = max_neg_val
|
30 |
+
else:
|
31 |
+
v_cur = value[y - 1, x]
|
32 |
+
if x == 0:
|
33 |
+
if y == 0:
|
34 |
+
v_prev = 0.0
|
35 |
+
else:
|
36 |
+
v_prev = max_neg_val
|
37 |
+
else:
|
38 |
+
v_prev = value[y - 1, x - 1]
|
39 |
+
value[y, x] += max(v_prev, v_cur)
|
40 |
+
|
41 |
+
for y in range(t_y - 1, -1, -1):
|
42 |
+
path[y, index] = 1
|
43 |
+
if index != 0 and (
|
44 |
+
index == y or value[y - 1, index] < value[y - 1, index - 1]
|
45 |
+
):
|
46 |
+
index = index - 1
|
preprocess_text.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from collections import defaultdict
|
3 |
+
from random import shuffle
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
from tqdm import tqdm
|
7 |
+
import click
|
8 |
+
from text.cleaner import clean_text
|
9 |
+
|
10 |
+
|
11 |
+
@click.command()
|
12 |
+
@click.option(
|
13 |
+
"--transcription-path",
|
14 |
+
default="filelists/genshin.list",
|
15 |
+
type=click.Path(exists=True, file_okay=True, dir_okay=False),
|
16 |
+
)
|
17 |
+
@click.option("--cleaned-path", default=None)
|
18 |
+
@click.option("--train-path", default="filelists/train.list")
|
19 |
+
@click.option("--val-path", default="filelists/val.list")
|
20 |
+
@click.option(
|
21 |
+
"--config-path",
|
22 |
+
default="configs/config.json",
|
23 |
+
type=click.Path(exists=True, file_okay=True, dir_okay=False),
|
24 |
+
)
|
25 |
+
@click.option("--val-per-spk", default=4)
|
26 |
+
@click.option("--max-val-total", default=8)
|
27 |
+
@click.option("--clean/--no-clean", default=True)
|
28 |
+
def main(
|
29 |
+
transcription_path: str,
|
30 |
+
cleaned_path: Optional[str],
|
31 |
+
train_path: str,
|
32 |
+
val_path: str,
|
33 |
+
config_path: str,
|
34 |
+
val_per_spk: int,
|
35 |
+
max_val_total: int,
|
36 |
+
clean: bool,
|
37 |
+
):
|
38 |
+
if cleaned_path is None:
|
39 |
+
cleaned_path = transcription_path + ".cleaned"
|
40 |
+
|
41 |
+
if clean:
|
42 |
+
errors = 0
|
43 |
+
out_file = open(cleaned_path, "w", encoding="utf-8")
|
44 |
+
for line in tqdm(open(transcription_path, encoding="utf-8").readlines()):
|
45 |
+
try:
|
46 |
+
utt, spk, language, text = line.strip().split("|")
|
47 |
+
norm_text, phones, tones, word2ph = clean_text(text, language)
|
48 |
+
out_file.write(
|
49 |
+
"{}|{}|{}|{}|{}|{}|{}\n".format(
|
50 |
+
utt,
|
51 |
+
spk,
|
52 |
+
language,
|
53 |
+
norm_text,
|
54 |
+
" ".join(phones),
|
55 |
+
" ".join([str(i) for i in tones]),
|
56 |
+
" ".join([str(i) for i in word2ph]),
|
57 |
+
)
|
58 |
+
)
|
59 |
+
except Exception as error:
|
60 |
+
errors += 1
|
61 |
+
print("err!", line, error)
|
62 |
+
print("errors:", errors)
|
63 |
+
out_file.close()
|
64 |
+
|
65 |
+
transcription_path = cleaned_path
|
66 |
+
|
67 |
+
spk_utt_map = defaultdict(list)
|
68 |
+
spk_id_map = {}
|
69 |
+
current_sid = 0
|
70 |
+
|
71 |
+
with open(transcription_path, encoding="utf-8") as f:
|
72 |
+
for line in f.readlines():
|
73 |
+
utt, spk, language, text, phones, tones, word2ph = line.strip().split("|")
|
74 |
+
spk_utt_map[spk].append(line)
|
75 |
+
|
76 |
+
if spk not in spk_id_map.keys():
|
77 |
+
spk_id_map[spk] = current_sid
|
78 |
+
current_sid += 1
|
79 |
+
|
80 |
+
train_list = []
|
81 |
+
val_list = []
|
82 |
+
|
83 |
+
for spk, utts in spk_utt_map.items():
|
84 |
+
shuffle(utts)
|
85 |
+
val_list += utts[:val_per_spk]
|
86 |
+
train_list += utts[val_per_spk:]
|
87 |
+
|
88 |
+
if len(val_list) > max_val_total:
|
89 |
+
train_list += val_list[max_val_total:]
|
90 |
+
val_list = val_list[:max_val_total]
|
91 |
+
|
92 |
+
with open(train_path, "w", encoding="utf-8") as f:
|
93 |
+
for line in train_list:
|
94 |
+
f.write(line)
|
95 |
+
|
96 |
+
with open(val_path, "w", encoding="utf-8") as f:
|
97 |
+
for line in val_list:
|
98 |
+
f.write(line)
|
99 |
+
|
100 |
+
config = json.load(open(config_path, encoding="utf-8"))
|
101 |
+
config["data"]["spk2id"] = spk_id_map
|
102 |
+
with open(config_path, "w", encoding="utf-8") as f:
|
103 |
+
json.dump(config, f, indent=2, ensure_ascii=False)
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librosa==0.9.1
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
numba
|
5 |
+
phonemizer
|
6 |
+
scipy
|
7 |
+
tensorboard
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
Unidecode
|
11 |
+
amfm_decompy
|
12 |
+
jieba
|
13 |
+
transformers
|
14 |
+
pypinyin
|
15 |
+
cn2an
|
16 |
+
gradio
|
17 |
+
av
|
18 |
+
mecab-python3
|
19 |
+
loguru
|
20 |
+
unidic-lite
|
21 |
+
cmudict
|
22 |
+
fugashi
|
23 |
+
num2words
|
resample.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import librosa
|
4 |
+
from multiprocessing import Pool, cpu_count
|
5 |
+
|
6 |
+
import soundfile
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
|
10 |
+
def process(item):
|
11 |
+
spkdir, wav_name, args = item
|
12 |
+
speaker = spkdir.replace("\\", "/").split("/")[-1]
|
13 |
+
wav_path = os.path.join(args.in_dir, speaker, wav_name)
|
14 |
+
if os.path.exists(wav_path) and ".wav" in wav_path:
|
15 |
+
os.makedirs(os.path.join(args.out_dir, speaker), exist_ok=True)
|
16 |
+
wav, sr = librosa.load(wav_path, sr=args.sr)
|
17 |
+
soundfile.write(os.path.join(args.out_dir, speaker, wav_name), wav, sr)
|
18 |
+
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
parser = argparse.ArgumentParser()
|
22 |
+
parser.add_argument("--sr", type=int, default=44100, help="sampling rate")
|
23 |
+
parser.add_argument(
|
24 |
+
"--in_dir", type=str, default="./raw", help="path to source dir"
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--out_dir", type=str, default="./dataset", help="path to target dir"
|
28 |
+
)
|
29 |
+
args = parser.parse_args()
|
30 |
+
# processes = 8
|
31 |
+
processes = cpu_count() - 2 if cpu_count() > 4 else 1
|
32 |
+
pool = Pool(processes=processes)
|
33 |
+
|
34 |
+
for speaker in os.listdir(args.in_dir):
|
35 |
+
spk_dir = os.path.join(args.in_dir, speaker)
|
36 |
+
if os.path.isdir(spk_dir):
|
37 |
+
print(spk_dir)
|
38 |
+
for _ in tqdm(
|
39 |
+
pool.imap_unordered(
|
40 |
+
process,
|
41 |
+
[
|
42 |
+
(spk_dir, i, args)
|
43 |
+
for i in os.listdir(spk_dir)
|
44 |
+
if i.endswith("wav")
|
45 |
+
],
|
46 |
+
)
|
47 |
+
):
|
48 |
+
pass
|
server.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, Response
|
2 |
+
from io import BytesIO
|
3 |
+
import torch
|
4 |
+
from av import open as avopen
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import utils
|
8 |
+
from models import SynthesizerTrn
|
9 |
+
from text.symbols import symbols
|
10 |
+
from text import cleaned_text_to_sequence, get_bert
|
11 |
+
from text.cleaner import clean_text
|
12 |
+
from scipy.io import wavfile
|
13 |
+
|
14 |
+
# Flask Init
|
15 |
+
app = Flask(__name__)
|
16 |
+
app.config["JSON_AS_ASCII"] = False
|
17 |
+
|
18 |
+
|
19 |
+
def get_text(text, language_str, hps):
|
20 |
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
21 |
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
22 |
+
|
23 |
+
if hps.data.add_blank:
|
24 |
+
phone = commons.intersperse(phone, 0)
|
25 |
+
tone = commons.intersperse(tone, 0)
|
26 |
+
language = commons.intersperse(language, 0)
|
27 |
+
for i in range(len(word2ph)):
|
28 |
+
word2ph[i] = word2ph[i] * 2
|
29 |
+
word2ph[0] += 1
|
30 |
+
bert = get_bert(norm_text, word2ph, language_str)
|
31 |
+
del word2ph
|
32 |
+
assert bert.shape[-1] == len(phone), phone
|
33 |
+
|
34 |
+
if language_str == "ZH":
|
35 |
+
bert = bert
|
36 |
+
ja_bert = torch.zeros(768, len(phone))
|
37 |
+
elif language_str == "JA":
|
38 |
+
ja_bert = bert
|
39 |
+
bert = torch.zeros(1024, len(phone))
|
40 |
+
else:
|
41 |
+
bert = torch.zeros(1024, len(phone))
|
42 |
+
ja_bert = torch.zeros(768, len(phone))
|
43 |
+
assert bert.shape[-1] == len(
|
44 |
+
phone
|
45 |
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
46 |
+
phone = torch.LongTensor(phone)
|
47 |
+
tone = torch.LongTensor(tone)
|
48 |
+
language = torch.LongTensor(language)
|
49 |
+
return bert, ja_bert, phone, tone, language
|
50 |
+
|
51 |
+
|
52 |
+
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
|
53 |
+
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
|
54 |
+
with torch.no_grad():
|
55 |
+
x_tst = phones.to(dev).unsqueeze(0)
|
56 |
+
tones = tones.to(dev).unsqueeze(0)
|
57 |
+
lang_ids = lang_ids.to(dev).unsqueeze(0)
|
58 |
+
bert = bert.to(dev).unsqueeze(0)
|
59 |
+
ja_bert = ja_bert.to(device).unsqueeze(0)
|
60 |
+
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev)
|
61 |
+
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev)
|
62 |
+
audio = (
|
63 |
+
net_g.infer(
|
64 |
+
x_tst,
|
65 |
+
x_tst_lengths,
|
66 |
+
speakers,
|
67 |
+
tones,
|
68 |
+
lang_ids,
|
69 |
+
bert,
|
70 |
+
ja_bert,
|
71 |
+
sdp_ratio=sdp_ratio,
|
72 |
+
noise_scale=noise_scale,
|
73 |
+
noise_scale_w=noise_scale_w,
|
74 |
+
length_scale=length_scale,
|
75 |
+
)[0][0, 0]
|
76 |
+
.data.cpu()
|
77 |
+
.float()
|
78 |
+
.numpy()
|
79 |
+
)
|
80 |
+
return audio
|
81 |
+
|
82 |
+
|
83 |
+
def replace_punctuation(text, i=2):
|
84 |
+
punctuation = ",。?!"
|
85 |
+
for char in punctuation:
|
86 |
+
text = text.replace(char, char * i)
|
87 |
+
return text
|
88 |
+
|
89 |
+
|
90 |
+
def wav2(i, o, format):
|
91 |
+
inp = avopen(i, "rb")
|
92 |
+
out = avopen(o, "wb", format=format)
|
93 |
+
if format == "ogg":
|
94 |
+
format = "libvorbis"
|
95 |
+
|
96 |
+
ostream = out.add_stream(format)
|
97 |
+
|
98 |
+
for frame in inp.decode(audio=0):
|
99 |
+
for p in ostream.encode(frame):
|
100 |
+
out.mux(p)
|
101 |
+
|
102 |
+
for p in ostream.encode(None):
|
103 |
+
out.mux(p)
|
104 |
+
|
105 |
+
out.close()
|
106 |
+
inp.close()
|
107 |
+
|
108 |
+
|
109 |
+
# Load Generator
|
110 |
+
hps = utils.get_hparams_from_file("./configs/config.json")
|
111 |
+
|
112 |
+
dev = "cuda"
|
113 |
+
net_g = SynthesizerTrn(
|
114 |
+
len(symbols),
|
115 |
+
hps.data.filter_length // 2 + 1,
|
116 |
+
hps.train.segment_size // hps.data.hop_length,
|
117 |
+
n_speakers=hps.data.n_speakers,
|
118 |
+
**hps.model,
|
119 |
+
).to(dev)
|
120 |
+
_ = net_g.eval()
|
121 |
+
|
122 |
+
_ = utils.load_checkpoint("logs/G_649000.pth", net_g, None, skip_optimizer=True)
|
123 |
+
|
124 |
+
|
125 |
+
@app.route("/")
|
126 |
+
def main():
|
127 |
+
try:
|
128 |
+
speaker = request.args.get("speaker")
|
129 |
+
text = request.args.get("text").replace("/n", "")
|
130 |
+
sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
|
131 |
+
noise = float(request.args.get("noise", 0.5))
|
132 |
+
noisew = float(request.args.get("noisew", 0.6))
|
133 |
+
length = float(request.args.get("length", 1.2))
|
134 |
+
language = request.args.get("language")
|
135 |
+
if length >= 2:
|
136 |
+
return "Too big length"
|
137 |
+
if len(text) >= 250:
|
138 |
+
return "Too long text"
|
139 |
+
fmt = request.args.get("format", "wav")
|
140 |
+
if None in (speaker, text):
|
141 |
+
return "Missing Parameter"
|
142 |
+
if fmt not in ("mp3", "wav", "ogg"):
|
143 |
+
return "Invalid Format"
|
144 |
+
if language not in ("JA", "ZH"):
|
145 |
+
return "Invalid language"
|
146 |
+
except:
|
147 |
+
return "Invalid Parameter"
|
148 |
+
|
149 |
+
with torch.no_grad():
|
150 |
+
audio = infer(
|
151 |
+
text,
|
152 |
+
sdp_ratio=sdp_ratio,
|
153 |
+
noise_scale=noise,
|
154 |
+
noise_scale_w=noisew,
|
155 |
+
length_scale=length,
|
156 |
+
sid=speaker,
|
157 |
+
language=language,
|
158 |
+
)
|
159 |
+
|
160 |
+
with BytesIO() as wav:
|
161 |
+
wavfile.write(wav, hps.data.sampling_rate, audio)
|
162 |
+
torch.cuda.empty_cache()
|
163 |
+
if fmt == "wav":
|
164 |
+
return Response(wav.getvalue(), mimetype="audio/wav")
|
165 |
+
wav.seek(0, 0)
|
166 |
+
with BytesIO() as ofp:
|
167 |
+
wav2(wav, ofp, fmt)
|
168 |
+
return Response(
|
169 |
+
ofp.getvalue(), mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg"
|
170 |
+
)
|
text/__init__.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from text.symbols import *
|
2 |
+
|
3 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
4 |
+
|
5 |
+
|
6 |
+
def cleaned_text_to_sequence(cleaned_text, tones, language):
|
7 |
+
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
8 |
+
Args:
|
9 |
+
text: string to convert to a sequence
|
10 |
+
Returns:
|
11 |
+
List of integers corresponding to the symbols in the text
|
12 |
+
"""
|
13 |
+
phones = [_symbol_to_id[symbol] for symbol in cleaned_text]
|
14 |
+
tone_start = language_tone_start_map[language]
|
15 |
+
tones = [i + tone_start for i in tones]
|
16 |
+
lang_id = language_id_map[language]
|
17 |
+
lang_ids = [lang_id for i in phones]
|
18 |
+
return phones, tones, lang_ids
|
19 |
+
|
20 |
+
|
21 |
+
def get_bert(norm_text, word2ph, language, device):
|
22 |
+
from .chinese_bert import get_bert_feature as zh_bert
|
23 |
+
from .english_bert_mock import get_bert_feature as en_bert
|
24 |
+
from .japanese_bert import get_bert_feature as jp_bert
|
25 |
+
|
26 |
+
lang_bert_func_map = {"ZH": zh_bert, "EN": en_bert, "JP": jp_bert}
|
27 |
+
bert = lang_bert_func_map[language](norm_text, word2ph, device)
|
28 |
+
return bert
|
text/chinese.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
|
4 |
+
import cn2an
|
5 |
+
from pypinyin import lazy_pinyin, Style
|
6 |
+
|
7 |
+
from text.symbols import punctuation
|
8 |
+
from text.tone_sandhi import ToneSandhi
|
9 |
+
|
10 |
+
current_file_path = os.path.dirname(__file__)
|
11 |
+
pinyin_to_symbol_map = {
|
12 |
+
line.split("\t")[0]: line.strip().split("\t")[1]
|
13 |
+
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines()
|
14 |
+
}
|
15 |
+
|
16 |
+
import jieba.posseg as psg
|
17 |
+
|
18 |
+
|
19 |
+
rep_map = {
|
20 |
+
":": ",",
|
21 |
+
";": ",",
|
22 |
+
",": ",",
|
23 |
+
"。": ".",
|
24 |
+
"!": "!",
|
25 |
+
"?": "?",
|
26 |
+
"\n": ".",
|
27 |
+
"·": ",",
|
28 |
+
"、": ",",
|
29 |
+
"...": "…",
|
30 |
+
"$": ".",
|
31 |
+
"“": "'",
|
32 |
+
"”": "'",
|
33 |
+
"‘": "'",
|
34 |
+
"’": "'",
|
35 |
+
"(": "'",
|
36 |
+
")": "'",
|
37 |
+
"(": "'",
|
38 |
+
")": "'",
|
39 |
+
"《": "'",
|
40 |
+
"》": "'",
|
41 |
+
"【": "'",
|
42 |
+
"】": "'",
|
43 |
+
"[": "'",
|
44 |
+
"]": "'",
|
45 |
+
"—": "-",
|
46 |
+
"~": "-",
|
47 |
+
"~": "-",
|
48 |
+
"「": "'",
|
49 |
+
"」": "'",
|
50 |
+
}
|
51 |
+
|
52 |
+
tone_modifier = ToneSandhi()
|
53 |
+
|
54 |
+
|
55 |
+
def replace_punctuation(text):
|
56 |
+
text = text.replace("嗯", "恩").replace("呣", "母")
|
57 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
58 |
+
|
59 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
60 |
+
|
61 |
+
replaced_text = re.sub(
|
62 |
+
r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
|
63 |
+
)
|
64 |
+
|
65 |
+
return replaced_text
|
66 |
+
|
67 |
+
|
68 |
+
def g2p(text):
|
69 |
+
pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
|
70 |
+
sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
|
71 |
+
phones, tones, word2ph = _g2p(sentences)
|
72 |
+
assert sum(word2ph) == len(phones)
|
73 |
+
assert len(word2ph) == len(text) # Sometimes it will crash,you can add a try-catch.
|
74 |
+
phones = ["_"] + phones + ["_"]
|
75 |
+
tones = [0] + tones + [0]
|
76 |
+
word2ph = [1] + word2ph + [1]
|
77 |
+
return phones, tones, word2ph
|
78 |
+
|
79 |
+
|
80 |
+
def _get_initials_finals(word):
|
81 |
+
initials = []
|
82 |
+
finals = []
|
83 |
+
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS)
|
84 |
+
orig_finals = lazy_pinyin(
|
85 |
+
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
|
86 |
+
)
|
87 |
+
for c, v in zip(orig_initials, orig_finals):
|
88 |
+
initials.append(c)
|
89 |
+
finals.append(v)
|
90 |
+
return initials, finals
|
91 |
+
|
92 |
+
|
93 |
+
def _g2p(segments):
|
94 |
+
phones_list = []
|
95 |
+
tones_list = []
|
96 |
+
word2ph = []
|
97 |
+
for seg in segments:
|
98 |
+
# Replace all English words in the sentence
|
99 |
+
seg = re.sub("[a-zA-Z]+", "", seg)
|
100 |
+
seg_cut = psg.lcut(seg)
|
101 |
+
initials = []
|
102 |
+
finals = []
|
103 |
+
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut)
|
104 |
+
for word, pos in seg_cut:
|
105 |
+
if pos == "eng":
|
106 |
+
continue
|
107 |
+
sub_initials, sub_finals = _get_initials_finals(word)
|
108 |
+
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals)
|
109 |
+
initials.append(sub_initials)
|
110 |
+
finals.append(sub_finals)
|
111 |
+
|
112 |
+
# assert len(sub_initials) == len(sub_finals) == len(word)
|
113 |
+
initials = sum(initials, [])
|
114 |
+
finals = sum(finals, [])
|
115 |
+
#
|
116 |
+
for c, v in zip(initials, finals):
|
117 |
+
raw_pinyin = c + v
|
118 |
+
# NOTE: post process for pypinyin outputs
|
119 |
+
# we discriminate i, ii and iii
|
120 |
+
if c == v:
|
121 |
+
assert c in punctuation
|
122 |
+
phone = [c]
|
123 |
+
tone = "0"
|
124 |
+
word2ph.append(1)
|
125 |
+
else:
|
126 |
+
v_without_tone = v[:-1]
|
127 |
+
tone = v[-1]
|
128 |
+
|
129 |
+
pinyin = c + v_without_tone
|
130 |
+
assert tone in "12345"
|
131 |
+
|
132 |
+
if c:
|
133 |
+
# 多音节
|
134 |
+
v_rep_map = {
|
135 |
+
"uei": "ui",
|
136 |
+
"iou": "iu",
|
137 |
+
"uen": "un",
|
138 |
+
}
|
139 |
+
if v_without_tone in v_rep_map.keys():
|
140 |
+
pinyin = c + v_rep_map[v_without_tone]
|
141 |
+
else:
|
142 |
+
# 单音节
|
143 |
+
pinyin_rep_map = {
|
144 |
+
"ing": "ying",
|
145 |
+
"i": "yi",
|
146 |
+
"in": "yin",
|
147 |
+
"u": "wu",
|
148 |
+
}
|
149 |
+
if pinyin in pinyin_rep_map.keys():
|
150 |
+
pinyin = pinyin_rep_map[pinyin]
|
151 |
+
else:
|
152 |
+
single_rep_map = {
|
153 |
+
"v": "yu",
|
154 |
+
"e": "e",
|
155 |
+
"i": "y",
|
156 |
+
"u": "w",
|
157 |
+
}
|
158 |
+
if pinyin[0] in single_rep_map.keys():
|
159 |
+
pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
|
160 |
+
|
161 |
+
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin)
|
162 |
+
phone = pinyin_to_symbol_map[pinyin].split(" ")
|
163 |
+
word2ph.append(len(phone))
|
164 |
+
|
165 |
+
phones_list += phone
|
166 |
+
tones_list += [int(tone)] * len(phone)
|
167 |
+
return phones_list, tones_list, word2ph
|
168 |
+
|
169 |
+
|
170 |
+
def text_normalize(text):
|
171 |
+
numbers = re.findall(r"\d+(?:\.?\d+)?", text)
|
172 |
+
for number in numbers:
|
173 |
+
text = text.replace(number, cn2an.an2cn(number), 1)
|
174 |
+
text = replace_punctuation(text)
|
175 |
+
return text
|
176 |
+
|
177 |
+
|
178 |
+
def get_bert_feature(text, word2ph):
|
179 |
+
from text import chinese_bert
|
180 |
+
|
181 |
+
return chinese_bert.get_bert_feature(text, word2ph)
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
from text.chinese_bert import get_bert_feature
|
186 |
+
|
187 |
+
text = "啊!但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏"
|
188 |
+
text = text_normalize(text)
|
189 |
+
print(text)
|
190 |
+
phones, tones, word2ph = g2p(text)
|
191 |
+
bert = get_bert_feature(text, word2ph)
|
192 |
+
|
193 |
+
print(phones, tones, word2ph, bert.shape)
|
194 |
+
|
195 |
+
|
196 |
+
# # 示例用法
|
197 |
+
# text = "这是一个示例文本:,你好!这是一个测试...."
|
198 |
+
# print(g2p_paddle(text)) # 输出: 这是一个示例文本你好这是一个测试
|
text/chinese_bert.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import sys
|
3 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/chinese-roberta-wwm-ext-large")
|
6 |
+
|
7 |
+
models = dict()
|
8 |
+
|
9 |
+
|
10 |
+
def get_bert_feature(text, word2ph, device=None):
|
11 |
+
if (
|
12 |
+
sys.platform == "darwin"
|
13 |
+
and torch.backends.mps.is_available()
|
14 |
+
and device == "cpu"
|
15 |
+
):
|
16 |
+
device = "mps"
|
17 |
+
if not device:
|
18 |
+
device = "cuda"
|
19 |
+
if device not in models.keys():
|
20 |
+
models[device] = AutoModelForMaskedLM.from_pretrained(
|
21 |
+
"./bert/chinese-roberta-wwm-ext-large"
|
22 |
+
).to(device)
|
23 |
+
with torch.no_grad():
|
24 |
+
inputs = tokenizer(text, return_tensors="pt")
|
25 |
+
for i in inputs:
|
26 |
+
inputs[i] = inputs[i].to(device)
|
27 |
+
res = models[device](**inputs, output_hidden_states=True)
|
28 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
29 |
+
|
30 |
+
assert len(word2ph) == len(text) + 2
|
31 |
+
word2phone = word2ph
|
32 |
+
phone_level_feature = []
|
33 |
+
for i in range(len(word2phone)):
|
34 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
35 |
+
phone_level_feature.append(repeat_feature)
|
36 |
+
|
37 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
38 |
+
|
39 |
+
return phone_level_feature.T
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
import torch
|
44 |
+
|
45 |
+
word_level_feature = torch.rand(38, 1024) # 12个词,每个词1024维特征
|
46 |
+
word2phone = [
|
47 |
+
1,
|
48 |
+
2,
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
2,
|
52 |
+
1,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
1,
|
56 |
+
2,
|
57 |
+
2,
|
58 |
+
1,
|
59 |
+
2,
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2,
|
64 |
+
1,
|
65 |
+
1,
|
66 |
+
2,
|
67 |
+
2,
|
68 |
+
1,
|
69 |
+
2,
|
70 |
+
2,
|
71 |
+
2,
|
72 |
+
2,
|
73 |
+
1,
|
74 |
+
2,
|
75 |
+
2,
|
76 |
+
2,
|
77 |
+
2,
|
78 |
+
2,
|
79 |
+
1,
|
80 |
+
2,
|
81 |
+
2,
|
82 |
+
2,
|
83 |
+
2,
|
84 |
+
1,
|
85 |
+
]
|
86 |
+
|
87 |
+
# 计算总帧数
|
88 |
+
total_frames = sum(word2phone)
|
89 |
+
print(word_level_feature.shape)
|
90 |
+
print(word2phone)
|
91 |
+
phone_level_feature = []
|
92 |
+
for i in range(len(word2phone)):
|
93 |
+
print(word_level_feature[i].shape)
|
94 |
+
|
95 |
+
# 对每个词重复word2phone[i]次
|
96 |
+
repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
|
97 |
+
phone_level_feature.append(repeat_feature)
|
98 |
+
|
99 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
100 |
+
print(phone_level_feature.shape) # torch.Size([36, 1024])
|
text/cleaner.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from text import chinese, japanese, cleaned_text_to_sequence
|
2 |
+
|
3 |
+
|
4 |
+
language_module_map = {"ZH": chinese, "JP": japanese}
|
5 |
+
|
6 |
+
|
7 |
+
def clean_text(text, language):
|
8 |
+
language_module = language_module_map[language]
|
9 |
+
norm_text = language_module.text_normalize(text)
|
10 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
11 |
+
return norm_text, phones, tones, word2ph
|
12 |
+
|
13 |
+
|
14 |
+
def clean_text_bert(text, language):
|
15 |
+
language_module = language_module_map[language]
|
16 |
+
norm_text = language_module.text_normalize(text)
|
17 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
18 |
+
bert = language_module.get_bert_feature(norm_text, word2ph)
|
19 |
+
return phones, tones, bert
|
20 |
+
|
21 |
+
|
22 |
+
def text_to_sequence(text, language):
|
23 |
+
norm_text, phones, tones, word2ph = clean_text(text, language)
|
24 |
+
return cleaned_text_to_sequence(phones, tones, language)
|
25 |
+
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
pass
|
text/cmudict.rep
ADDED
The diff for this file is too large to render.
See raw diff
|
|
text/cmudict_cache.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9b21b20325471934ba92f2e4a5976989e7d920caa32e7a286eacb027d197949
|
3 |
+
size 6212655
|
text/english.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from g2p_en import G2p
|
5 |
+
|
6 |
+
from text import symbols
|
7 |
+
|
8 |
+
current_file_path = os.path.dirname(__file__)
|
9 |
+
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
|
10 |
+
CACHE_PATH = os.path.join(current_file_path, "cmudict_cache.pickle")
|
11 |
+
_g2p = G2p()
|
12 |
+
|
13 |
+
arpa = {
|
14 |
+
"AH0",
|
15 |
+
"S",
|
16 |
+
"AH1",
|
17 |
+
"EY2",
|
18 |
+
"AE2",
|
19 |
+
"EH0",
|
20 |
+
"OW2",
|
21 |
+
"UH0",
|
22 |
+
"NG",
|
23 |
+
"B",
|
24 |
+
"G",
|
25 |
+
"AY0",
|
26 |
+
"M",
|
27 |
+
"AA0",
|
28 |
+
"F",
|
29 |
+
"AO0",
|
30 |
+
"ER2",
|
31 |
+
"UH1",
|
32 |
+
"IY1",
|
33 |
+
"AH2",
|
34 |
+
"DH",
|
35 |
+
"IY0",
|
36 |
+
"EY1",
|
37 |
+
"IH0",
|
38 |
+
"K",
|
39 |
+
"N",
|
40 |
+
"W",
|
41 |
+
"IY2",
|
42 |
+
"T",
|
43 |
+
"AA1",
|
44 |
+
"ER1",
|
45 |
+
"EH2",
|
46 |
+
"OY0",
|
47 |
+
"UH2",
|
48 |
+
"UW1",
|
49 |
+
"Z",
|
50 |
+
"AW2",
|
51 |
+
"AW1",
|
52 |
+
"V",
|
53 |
+
"UW2",
|
54 |
+
"AA2",
|
55 |
+
"ER",
|
56 |
+
"AW0",
|
57 |
+
"UW0",
|
58 |
+
"R",
|
59 |
+
"OW1",
|
60 |
+
"EH1",
|
61 |
+
"ZH",
|
62 |
+
"AE0",
|
63 |
+
"IH2",
|
64 |
+
"IH",
|
65 |
+
"Y",
|
66 |
+
"JH",
|
67 |
+
"P",
|
68 |
+
"AY1",
|
69 |
+
"EY0",
|
70 |
+
"OY2",
|
71 |
+
"TH",
|
72 |
+
"HH",
|
73 |
+
"D",
|
74 |
+
"ER0",
|
75 |
+
"CH",
|
76 |
+
"AO1",
|
77 |
+
"AE1",
|
78 |
+
"AO2",
|
79 |
+
"OY1",
|
80 |
+
"AY2",
|
81 |
+
"IH1",
|
82 |
+
"OW0",
|
83 |
+
"L",
|
84 |
+
"SH",
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
def post_replace_ph(ph):
|
89 |
+
rep_map = {
|
90 |
+
":": ",",
|
91 |
+
";": ",",
|
92 |
+
",": ",",
|
93 |
+
"。": ".",
|
94 |
+
"!": "!",
|
95 |
+
"?": "?",
|
96 |
+
"\n": ".",
|
97 |
+
"·": ",",
|
98 |
+
"、": ",",
|
99 |
+
"...": "…",
|
100 |
+
"v": "V",
|
101 |
+
}
|
102 |
+
if ph in rep_map.keys():
|
103 |
+
ph = rep_map[ph]
|
104 |
+
if ph in symbols:
|
105 |
+
return ph
|
106 |
+
if ph not in symbols:
|
107 |
+
ph = "UNK"
|
108 |
+
return ph
|
109 |
+
|
110 |
+
|
111 |
+
def read_dict():
|
112 |
+
g2p_dict = {}
|
113 |
+
start_line = 49
|
114 |
+
with open(CMU_DICT_PATH) as f:
|
115 |
+
line = f.readline()
|
116 |
+
line_index = 1
|
117 |
+
while line:
|
118 |
+
if line_index >= start_line:
|
119 |
+
line = line.strip()
|
120 |
+
word_split = line.split(" ")
|
121 |
+
word = word_split[0]
|
122 |
+
|
123 |
+
syllable_split = word_split[1].split(" - ")
|
124 |
+
g2p_dict[word] = []
|
125 |
+
for syllable in syllable_split:
|
126 |
+
phone_split = syllable.split(" ")
|
127 |
+
g2p_dict[word].append(phone_split)
|
128 |
+
|
129 |
+
line_index = line_index + 1
|
130 |
+
line = f.readline()
|
131 |
+
|
132 |
+
return g2p_dict
|
133 |
+
|
134 |
+
|
135 |
+
def cache_dict(g2p_dict, file_path):
|
136 |
+
with open(file_path, "wb") as pickle_file:
|
137 |
+
pickle.dump(g2p_dict, pickle_file)
|
138 |
+
|
139 |
+
|
140 |
+
def get_dict():
|
141 |
+
if os.path.exists(CACHE_PATH):
|
142 |
+
with open(CACHE_PATH, "rb") as pickle_file:
|
143 |
+
g2p_dict = pickle.load(pickle_file)
|
144 |
+
else:
|
145 |
+
g2p_dict = read_dict()
|
146 |
+
cache_dict(g2p_dict, CACHE_PATH)
|
147 |
+
|
148 |
+
return g2p_dict
|
149 |
+
|
150 |
+
|
151 |
+
eng_dict = get_dict()
|
152 |
+
|
153 |
+
|
154 |
+
def refine_ph(phn):
|
155 |
+
tone = 0
|
156 |
+
if re.search(r"\d$", phn):
|
157 |
+
tone = int(phn[-1]) + 1
|
158 |
+
phn = phn[:-1]
|
159 |
+
return phn.lower(), tone
|
160 |
+
|
161 |
+
|
162 |
+
def refine_syllables(syllables):
|
163 |
+
tones = []
|
164 |
+
phonemes = []
|
165 |
+
for phn_list in syllables:
|
166 |
+
for i in range(len(phn_list)):
|
167 |
+
phn = phn_list[i]
|
168 |
+
phn, tone = refine_ph(phn)
|
169 |
+
phonemes.append(phn)
|
170 |
+
tones.append(tone)
|
171 |
+
return phonemes, tones
|
172 |
+
|
173 |
+
|
174 |
+
def text_normalize(text):
|
175 |
+
# todo: eng text normalize
|
176 |
+
return text
|
177 |
+
|
178 |
+
|
179 |
+
def g2p(text):
|
180 |
+
phones = []
|
181 |
+
tones = []
|
182 |
+
words = re.split(r"([,;.\-\?\!\s+])", text)
|
183 |
+
for w in words:
|
184 |
+
if w.upper() in eng_dict:
|
185 |
+
phns, tns = refine_syllables(eng_dict[w.upper()])
|
186 |
+
phones += phns
|
187 |
+
tones += tns
|
188 |
+
else:
|
189 |
+
phone_list = list(filter(lambda p: p != " ", _g2p(w)))
|
190 |
+
for ph in phone_list:
|
191 |
+
if ph in arpa:
|
192 |
+
ph, tn = refine_ph(ph)
|
193 |
+
phones.append(ph)
|
194 |
+
tones.append(tn)
|
195 |
+
else:
|
196 |
+
phones.append(ph)
|
197 |
+
tones.append(0)
|
198 |
+
# todo: implement word2ph
|
199 |
+
word2ph = [1 for i in phones]
|
200 |
+
|
201 |
+
phones = [post_replace_ph(i) for i in phones]
|
202 |
+
return phones, tones, word2ph
|
203 |
+
|
204 |
+
|
205 |
+
if __name__ == "__main__":
|
206 |
+
# print(get_dict())
|
207 |
+
# print(eng_word_to_phoneme("hello"))
|
208 |
+
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder."))
|
209 |
+
# all_phones = set()
|
210 |
+
# for k, syllables in eng_dict.items():
|
211 |
+
# for group in syllables:
|
212 |
+
# for ph in group:
|
213 |
+
# all_phones.add(ph)
|
214 |
+
# print(all_phones)
|
text/english_bert_mock.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def get_bert_feature(norm_text, word2ph):
|
5 |
+
return torch.zeros(1024, sum(word2ph))
|
text/japanese.py
ADDED
@@ -0,0 +1,668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Convert Japanese text to phonemes which is
|
2 |
+
# compatible with Julius https://github.com/julius-speech/segmentation-kit
|
3 |
+
import re
|
4 |
+
import unicodedata
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
from text import punctuation, symbols
|
9 |
+
|
10 |
+
try:
|
11 |
+
import MeCab
|
12 |
+
except ImportError as e:
|
13 |
+
raise ImportError("Japanese requires mecab-python3 and unidic-lite.") from e
|
14 |
+
from num2words import num2words
|
15 |
+
|
16 |
+
_CONVRULES = [
|
17 |
+
# Conversion of 2 letters
|
18 |
+
"アァ/ a a",
|
19 |
+
"イィ/ i i",
|
20 |
+
"イェ/ i e",
|
21 |
+
"イャ/ y a",
|
22 |
+
"ウゥ/ u:",
|
23 |
+
"エェ/ e e",
|
24 |
+
"オォ/ o:",
|
25 |
+
"カァ/ k a:",
|
26 |
+
"キィ/ k i:",
|
27 |
+
"クゥ/ k u:",
|
28 |
+
"クャ/ ky a",
|
29 |
+
"クュ/ ky u",
|
30 |
+
"クョ/ ky o",
|
31 |
+
"ケェ/ k e:",
|
32 |
+
"コォ/ k o:",
|
33 |
+
"ガァ/ g a:",
|
34 |
+
"ギィ/ g i:",
|
35 |
+
"グゥ/ g u:",
|
36 |
+
"グャ/ gy a",
|
37 |
+
"グュ/ gy u",
|
38 |
+
"グョ/ gy o",
|
39 |
+
"ゲェ/ g e:",
|
40 |
+
"ゴォ/ g o:",
|
41 |
+
"サァ/ s a:",
|
42 |
+
"シィ/ sh i:",
|
43 |
+
"スゥ/ s u:",
|
44 |
+
"スャ/ sh a",
|
45 |
+
"スュ/ sh u",
|
46 |
+
"スョ/ sh o",
|
47 |
+
"セェ/ s e:",
|
48 |
+
"ソォ/ s o:",
|
49 |
+
"ザァ/ z a:",
|
50 |
+
"ジィ/ j i:",
|
51 |
+
"ズゥ/ z u:",
|
52 |
+
"ズャ/ zy a",
|
53 |
+
"ズュ/ zy u",
|
54 |
+
"ズョ/ zy o",
|
55 |
+
"ゼェ/ z e:",
|
56 |
+
"ゾォ/ z o:",
|
57 |
+
"タァ/ t a:",
|
58 |
+
"チィ/ ch i:",
|
59 |
+
"ツァ/ ts a",
|
60 |
+
"ツィ/ ts i",
|
61 |
+
"ツゥ/ ts u:",
|
62 |
+
"ツャ/ ch a",
|
63 |
+
"ツュ/ ch u",
|
64 |
+
"ツョ/ ch o",
|
65 |
+
"ツェ/ ts e",
|
66 |
+
"ツォ/ ts o",
|
67 |
+
"テェ/ t e:",
|
68 |
+
"トォ/ t o:",
|
69 |
+
"ダァ/ d a:",
|
70 |
+
"ヂィ/ j i:",
|
71 |
+
"ヅゥ/ d u:",
|
72 |
+
"ヅャ/ zy a",
|
73 |
+
"ヅュ/ zy u",
|
74 |
+
"ヅョ/ zy o",
|
75 |
+
"デェ/ d e:",
|
76 |
+
"ドォ/ d o:",
|
77 |
+
"ナァ/ n a:",
|
78 |
+
"ニィ/ n i:",
|
79 |
+
"ヌゥ/ n u:",
|
80 |
+
"ヌャ/ ny a",
|
81 |
+
"ヌュ/ ny u",
|
82 |
+
"ヌョ/ ny o",
|
83 |
+
"ネェ/ n e:",
|
84 |
+
"ノォ/ n o:",
|
85 |
+
"ハァ/ h a:",
|
86 |
+
"ヒィ/ h i:",
|
87 |
+
"フゥ/ f u:",
|
88 |
+
"フャ/ hy a",
|
89 |
+
"フュ/ hy u",
|
90 |
+
"フョ/ hy o",
|
91 |
+
"ヘェ/ h e:",
|
92 |
+
"ホォ/ h o:",
|
93 |
+
"バァ/ b a:",
|
94 |
+
"ビィ/ b i:",
|
95 |
+
"ブゥ/ b u:",
|
96 |
+
"フャ/ hy a",
|
97 |
+
"ブュ/ by u",
|
98 |
+
"フョ/ hy o",
|
99 |
+
"ベェ/ b e:",
|
100 |
+
"ボォ/ b o:",
|
101 |
+
"パァ/ p a:",
|
102 |
+
"ピィ/ p i:",
|
103 |
+
"プゥ/ p u:",
|
104 |
+
"プャ/ py a",
|
105 |
+
"プュ/ py u",
|
106 |
+
"プョ/ py o",
|
107 |
+
"ペェ/ p e:",
|
108 |
+
"ポォ/ p o:",
|
109 |
+
"マァ/ m a:",
|
110 |
+
"ミィ/ m i:",
|
111 |
+
"ムゥ/ m u:",
|
112 |
+
"ムャ/ my a",
|
113 |
+
"ムュ/ my u",
|
114 |
+
"ムョ/ my o",
|
115 |
+
"メェ/ m e:",
|
116 |
+
"モォ/ m o:",
|
117 |
+
"ヤァ/ y a:",
|
118 |
+
"ユゥ/ y u:",
|
119 |
+
"ユャ/ y a:",
|
120 |
+
"ユュ/ y u:",
|
121 |
+
"ユョ/ y o:",
|
122 |
+
"ヨォ/ y o:",
|
123 |
+
"ラァ/ r a:",
|
124 |
+
"リィ/ r i:",
|
125 |
+
"ルゥ/ r u:",
|
126 |
+
"ルャ/ ry a",
|
127 |
+
"ルュ/ ry u",
|
128 |
+
"ルョ/ ry o",
|
129 |
+
"レェ/ r e:",
|
130 |
+
"ロォ/ r o:",
|
131 |
+
"ワァ/ w a:",
|
132 |
+
"ヲォ/ o:",
|
133 |
+
"ディ/ d i",
|
134 |
+
"デェ/ d e:",
|
135 |
+
"デャ/ dy a",
|
136 |
+
"デュ/ dy u",
|
137 |
+
"デョ/ dy o",
|
138 |
+
"ティ/ t i",
|
139 |
+
"テェ/ t e:",
|
140 |
+
"テャ/ ty a",
|
141 |
+
"テュ/ ty u",
|
142 |
+
"テョ/ ty o",
|
143 |
+
"スィ/ s i",
|
144 |
+
"ズァ/ z u a",
|
145 |
+
"ズィ/ z i",
|
146 |
+
"ズゥ/ z u",
|
147 |
+
"ズャ/ zy a",
|
148 |
+
"ズュ/ zy u",
|
149 |
+
"ズョ/ zy o",
|
150 |
+
"ズェ/ z e",
|
151 |
+
"ズォ/ z o",
|
152 |
+
"キャ/ ky a",
|
153 |
+
"キュ/ ky u",
|
154 |
+
"キョ/ ky o",
|
155 |
+
"シャ/ sh a",
|
156 |
+
"シュ/ sh u",
|
157 |
+
"シェ/ sh e",
|
158 |
+
"ショ/ sh o",
|
159 |
+
"チャ/ ch a",
|
160 |
+
"チュ/ ch u",
|
161 |
+
"チェ/ ch e",
|
162 |
+
"チョ/ ch o",
|
163 |
+
"トゥ/ t u",
|
164 |
+
"トャ/ ty a",
|
165 |
+
"トュ/ ty u",
|
166 |
+
"トョ/ ty o",
|
167 |
+
"ドァ/ d o a",
|
168 |
+
"ドゥ/ d u",
|
169 |
+
"ドャ/ dy a",
|
170 |
+
"ドュ/ dy u",
|
171 |
+
"ドョ/ dy o",
|
172 |
+
"ドォ/ d o:",
|
173 |
+
"ニャ/ ny a",
|
174 |
+
"ニュ/ ny u",
|
175 |
+
"ニョ/ ny o",
|
176 |
+
"ヒャ/ hy a",
|
177 |
+
"ヒュ/ hy u",
|
178 |
+
"ヒョ/ hy o",
|
179 |
+
"ミャ/ my a",
|
180 |
+
"ミュ/ my u",
|
181 |
+
"ミョ/ my o",
|
182 |
+
"リャ/ ry a",
|
183 |
+
"リュ/ ry u",
|
184 |
+
"リョ/ ry o",
|
185 |
+
"ギャ/ gy a",
|
186 |
+
"ギュ/ gy u",
|
187 |
+
"ギョ/ gy o",
|
188 |
+
"ヂェ/ j e",
|
189 |
+
"ヂャ/ j a",
|
190 |
+
"ヂュ/ j u",
|
191 |
+
"ヂョ/ j o",
|
192 |
+
"ジェ/ j e",
|
193 |
+
"ジャ/ j a",
|
194 |
+
"ジュ/ j u",
|
195 |
+
"ジョ/ j o",
|
196 |
+
"ビャ/ by a",
|
197 |
+
"ビュ/ by u",
|
198 |
+
"ビョ/ by o",
|
199 |
+
"ピャ/ py a",
|
200 |
+
"ピュ/ py u",
|
201 |
+
"ピョ/ py o",
|
202 |
+
"ウァ/ u a",
|
203 |
+
"ウィ/ w i",
|
204 |
+
"ウェ/ w e",
|
205 |
+
"ウォ/ w o",
|
206 |
+
"ファ/ f a",
|
207 |
+
"フィ/ f i",
|
208 |
+
"フゥ/ f u",
|
209 |
+
"フャ/ hy a",
|
210 |
+
"フュ/ hy u",
|
211 |
+
"フョ/ hy o",
|
212 |
+
"フェ/ f e",
|
213 |
+
"フォ/ f o",
|
214 |
+
"ヴァ/ b a",
|
215 |
+
"ヴィ/ b i",
|
216 |
+
"ヴェ/ b e",
|
217 |
+
"ヴォ/ b o",
|
218 |
+
"ヴュ/ by u",
|
219 |
+
# Conversion of 1 letter
|
220 |
+
"ア/ a",
|
221 |
+
"イ/ i",
|
222 |
+
"ウ/ u",
|
223 |
+
"エ/ e",
|
224 |
+
"オ/ o",
|
225 |
+
"カ/ k a",
|
226 |
+
"キ/ k i",
|
227 |
+
"ク/ k u",
|
228 |
+
"ケ/ k e",
|
229 |
+
"コ/ k o",
|
230 |
+
"サ/ s a",
|
231 |
+
"シ/ sh i",
|
232 |
+
"ス/ s u",
|
233 |
+
"セ/ s e",
|
234 |
+
"ソ/ s o",
|
235 |
+
"タ/ t a",
|
236 |
+
"チ/ ch i",
|
237 |
+
"ツ/ ts u",
|
238 |
+
"テ/ t e",
|
239 |
+
"ト/ t o",
|
240 |
+
"ナ/ n a",
|
241 |
+
"ニ/ n i",
|
242 |
+
"ヌ/ n u",
|
243 |
+
"ネ/ n e",
|
244 |
+
"ノ/ n o",
|
245 |
+
"ハ/ h a",
|
246 |
+
"ヒ/ h i",
|
247 |
+
"フ/ f u",
|
248 |
+
"ヘ/ h e",
|
249 |
+
"ホ/ h o",
|
250 |
+
"マ/ m a",
|
251 |
+
"ミ/ m i",
|
252 |
+
"ム/ m u",
|
253 |
+
"メ/ m e",
|
254 |
+
"モ/ m o",
|
255 |
+
"ラ/ r a",
|
256 |
+
"リ/ r i",
|
257 |
+
"ル/ r u",
|
258 |
+
"レ/ r e",
|
259 |
+
"ロ/ r o",
|
260 |
+
"ガ/ g a",
|
261 |
+
"ギ/ g i",
|
262 |
+
"グ/ g u",
|
263 |
+
"ゲ/ g e",
|
264 |
+
"ゴ/ g o",
|
265 |
+
"ザ/ z a",
|
266 |
+
"ジ/ j i",
|
267 |
+
"ズ/ z u",
|
268 |
+
"ゼ/ z e",
|
269 |
+
"ゾ/ z o",
|
270 |
+
"ダ/ d a",
|
271 |
+
"ヂ/ j i",
|
272 |
+
"ヅ/ z u",
|
273 |
+
"デ/ d e",
|
274 |
+
"ド/ d o",
|
275 |
+
"バ/ b a",
|
276 |
+
"ビ/ b i",
|
277 |
+
"ブ/ b u",
|
278 |
+
"ベ/ b e",
|
279 |
+
"ボ/ b o",
|
280 |
+
"パ/ p a",
|
281 |
+
"ピ/ p i",
|
282 |
+
"プ/ p u",
|
283 |
+
"ペ/ p e",
|
284 |
+
"ポ/ p o",
|
285 |
+
"ヤ/ y a",
|
286 |
+
"ユ/ y u",
|
287 |
+
"ヨ/ y o",
|
288 |
+
"ワ/ w a",
|
289 |
+
"ヰ/ i",
|
290 |
+
"ヱ/ e",
|
291 |
+
"ヲ/ o",
|
292 |
+
"ン/ N",
|
293 |
+
"ッ/ q",
|
294 |
+
"ヴ/ b u",
|
295 |
+
"ー/:",
|
296 |
+
# Try converting broken text
|
297 |
+
"ァ/ a",
|
298 |
+
"ィ/ i",
|
299 |
+
"ゥ/ u",
|
300 |
+
"ェ/ e",
|
301 |
+
"ォ/ o",
|
302 |
+
"ヮ/ w a",
|
303 |
+
"ォ/ o",
|
304 |
+
# Symbols
|
305 |
+
"、/ ,",
|
306 |
+
"。/ .",
|
307 |
+
"!/ !",
|
308 |
+
"?/ ?",
|
309 |
+
"・/ ,",
|
310 |
+
]
|
311 |
+
|
312 |
+
_COLON_RX = re.compile(":+")
|
313 |
+
_REJECT_RX = re.compile("[^ a-zA-Z:,.?]")
|
314 |
+
|
315 |
+
|
316 |
+
def _makerulemap():
|
317 |
+
l = [tuple(x.split("/")) for x in _CONVRULES]
|
318 |
+
return tuple({k: v for k, v in l if len(k) == i} for i in (1, 2))
|
319 |
+
|
320 |
+
|
321 |
+
_RULEMAP1, _RULEMAP2 = _makerulemap()
|
322 |
+
|
323 |
+
|
324 |
+
def kata2phoneme(text: str) -> str:
|
325 |
+
"""Convert katakana text to phonemes."""
|
326 |
+
text = text.strip()
|
327 |
+
res = []
|
328 |
+
while text:
|
329 |
+
if len(text) >= 2:
|
330 |
+
x = _RULEMAP2.get(text[:2])
|
331 |
+
if x is not None:
|
332 |
+
text = text[2:]
|
333 |
+
res += x.split(" ")[1:]
|
334 |
+
continue
|
335 |
+
x = _RULEMAP1.get(text[0])
|
336 |
+
if x is not None:
|
337 |
+
text = text[1:]
|
338 |
+
res += x.split(" ")[1:]
|
339 |
+
continue
|
340 |
+
res.append(text[0])
|
341 |
+
text = text[1:]
|
342 |
+
# res = _COLON_RX.sub(":", res)
|
343 |
+
return res
|
344 |
+
|
345 |
+
|
346 |
+
_KATAKANA = "".join(chr(ch) for ch in range(ord("ァ"), ord("ン") + 1))
|
347 |
+
_HIRAGANA = "".join(chr(ch) for ch in range(ord("ぁ"), ord("ん") + 1))
|
348 |
+
_HIRA2KATATRANS = str.maketrans(_HIRAGANA, _KATAKANA)
|
349 |
+
|
350 |
+
|
351 |
+
def hira2kata(text: str) -> str:
|
352 |
+
text = text.translate(_HIRA2KATATRANS)
|
353 |
+
return text.replace("う゛", "ヴ")
|
354 |
+
|
355 |
+
|
356 |
+
_SYMBOL_TOKENS = set(list("・、。?!"))
|
357 |
+
_NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
|
358 |
+
_TAGGER = MeCab.Tagger()
|
359 |
+
|
360 |
+
|
361 |
+
def text2kata(text: str) -> str:
|
362 |
+
parsed = _TAGGER.parse(text)
|
363 |
+
res = []
|
364 |
+
for line in parsed.split("\n"):
|
365 |
+
if line == "EOS":
|
366 |
+
break
|
367 |
+
parts = line.split("\t")
|
368 |
+
|
369 |
+
word, yomi = parts[0], parts[1]
|
370 |
+
if yomi:
|
371 |
+
res.append(yomi)
|
372 |
+
else:
|
373 |
+
if word in _SYMBOL_TOKENS:
|
374 |
+
res.append(word)
|
375 |
+
elif word in ("っ", "ッ"):
|
376 |
+
res.append("ッ")
|
377 |
+
elif word in _NO_YOMI_TOKENS:
|
378 |
+
pass
|
379 |
+
else:
|
380 |
+
res.append(word)
|
381 |
+
return hira2kata("".join(res))
|
382 |
+
|
383 |
+
|
384 |
+
def text2sep_kata(text: str) -> (list,list):
|
385 |
+
parsed = _TAGGER.parse(text)
|
386 |
+
res = []
|
387 |
+
sep = []
|
388 |
+
for line in parsed.split("\n"):
|
389 |
+
if line == "EOS":
|
390 |
+
break
|
391 |
+
parts = line.split("\t")
|
392 |
+
|
393 |
+
word, yomi = parts[0], parts[1]
|
394 |
+
if yomi:
|
395 |
+
res.append(yomi)
|
396 |
+
else:
|
397 |
+
if word in _SYMBOL_TOKENS:
|
398 |
+
res.append(word)
|
399 |
+
elif word in ("っ", "ッ"):
|
400 |
+
res.append("ッ")
|
401 |
+
elif word in _NO_YOMI_TOKENS:
|
402 |
+
pass
|
403 |
+
else:
|
404 |
+
res.append(word)
|
405 |
+
sep.append(word)
|
406 |
+
return sep, [hira2kata(i) for i in res]
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
_ALPHASYMBOL_YOMI = {
|
412 |
+
"#": "シャープ",
|
413 |
+
"%": "パーセント",
|
414 |
+
"&": "アンド",
|
415 |
+
"+": "プラス",
|
416 |
+
"-": "マイナス",
|
417 |
+
":": "コロン",
|
418 |
+
";": "セミコロン",
|
419 |
+
"<": "小なり",
|
420 |
+
"=": "イコール",
|
421 |
+
">": "大なり",
|
422 |
+
"@": "アット",
|
423 |
+
"a": "エー",
|
424 |
+
"b": "ビー",
|
425 |
+
"c": "シー",
|
426 |
+
"d": "ディー",
|
427 |
+
"e": "イー",
|
428 |
+
"f": "エフ",
|
429 |
+
"g": "ジー",
|
430 |
+
"h": "エイチ",
|
431 |
+
"i": "アイ",
|
432 |
+
"j": "ジェー",
|
433 |
+
"k": "ケー",
|
434 |
+
"l": "エル",
|
435 |
+
"m": "エム",
|
436 |
+
"n": "エヌ",
|
437 |
+
"o": "オー",
|
438 |
+
"p": "ピー",
|
439 |
+
"q": "キュー",
|
440 |
+
"r": "アール",
|
441 |
+
"s": "エス",
|
442 |
+
"t": "ティー",
|
443 |
+
"u": "ユー",
|
444 |
+
"v": "ブイ",
|
445 |
+
"w": "ダブリュー",
|
446 |
+
"x": "エックス",
|
447 |
+
"y": "ワイ",
|
448 |
+
"z": "ゼット",
|
449 |
+
"α": "アルファ",
|
450 |
+
"β": "ベータ",
|
451 |
+
"γ": "ガンマ",
|
452 |
+
"δ": "デルタ",
|
453 |
+
"ε": "イプシロン",
|
454 |
+
"ζ": "ゼータ",
|
455 |
+
"η": "イータ",
|
456 |
+
"θ": "シータ",
|
457 |
+
"ι": "イオタ",
|
458 |
+
"κ": "カッパ",
|
459 |
+
"λ": "ラムダ",
|
460 |
+
"μ": "ミュー",
|
461 |
+
"ν": "ニュー",
|
462 |
+
"ξ": "クサイ",
|
463 |
+
"ο": "オミクロン",
|
464 |
+
"π": "パイ",
|
465 |
+
"ρ": "ロー",
|
466 |
+
"σ": "シグマ",
|
467 |
+
"τ": "タウ",
|
468 |
+
"υ": "ウプシロン",
|
469 |
+
"φ": "ファイ",
|
470 |
+
"χ": "カイ",
|
471 |
+
"ψ": "プサイ",
|
472 |
+
"ω": "オメガ",
|
473 |
+
}
|
474 |
+
|
475 |
+
|
476 |
+
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
|
477 |
+
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
|
478 |
+
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
|
479 |
+
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
|
480 |
+
|
481 |
+
|
482 |
+
def japanese_convert_numbers_to_words(text: str) -> str:
|
483 |
+
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
|
484 |
+
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
|
485 |
+
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
|
486 |
+
return res
|
487 |
+
|
488 |
+
|
489 |
+
def japanese_convert_alpha_symbols_to_words(text: str) -> str:
|
490 |
+
return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
|
491 |
+
|
492 |
+
|
493 |
+
def japanese_text_to_phonemes(text: str) -> str:
|
494 |
+
"""Convert Japanese text to phonemes."""
|
495 |
+
res = unicodedata.normalize("NFKC", text)
|
496 |
+
res = japanese_convert_numbers_to_words(res)
|
497 |
+
# res = japanese_convert_alpha_symbols_to_words(res)
|
498 |
+
res = text2kata(res)
|
499 |
+
res = kata2phoneme(res)
|
500 |
+
return res
|
501 |
+
|
502 |
+
|
503 |
+
def is_japanese_character(char):
|
504 |
+
# 定义日语文字系统的 Unicode 范围
|
505 |
+
japanese_ranges = [
|
506 |
+
(0x3040, 0x309F), # 平假名
|
507 |
+
(0x30A0, 0x30FF), # 片假名
|
508 |
+
(0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
|
509 |
+
(0x3400, 0x4DBF), # 汉字扩展 A
|
510 |
+
(0x20000, 0x2A6DF), # 汉字扩展 B
|
511 |
+
# 可以根据需要添加其他汉字扩展范围
|
512 |
+
]
|
513 |
+
|
514 |
+
# 将字符的 Unicode 编码转换为整数
|
515 |
+
char_code = ord(char)
|
516 |
+
|
517 |
+
# 检查字符是否在任何一个日语范围内
|
518 |
+
for start, end in japanese_ranges:
|
519 |
+
if start <= char_code <= end:
|
520 |
+
return True
|
521 |
+
|
522 |
+
return False
|
523 |
+
|
524 |
+
|
525 |
+
rep_map = {
|
526 |
+
":": ",",
|
527 |
+
";": ",",
|
528 |
+
",": ",",
|
529 |
+
"。": ".",
|
530 |
+
"!": "!",
|
531 |
+
"?": "?",
|
532 |
+
"\n": ".",
|
533 |
+
"·": ",",
|
534 |
+
"、": ",",
|
535 |
+
"…": "..."
|
536 |
+
}
|
537 |
+
|
538 |
+
|
539 |
+
def replace_punctuation(text):
|
540 |
+
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
541 |
+
|
542 |
+
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
|
543 |
+
|
544 |
+
replaced_text = re.sub(
|
545 |
+
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF"
|
546 |
+
+ "".join(punctuation)
|
547 |
+
+ r"]+",
|
548 |
+
"",
|
549 |
+
replaced_text,
|
550 |
+
)
|
551 |
+
|
552 |
+
return replaced_text
|
553 |
+
|
554 |
+
|
555 |
+
def text_normalize(text):
|
556 |
+
res = unicodedata.normalize("NFKC", text)
|
557 |
+
res = japanese_convert_numbers_to_words(res)
|
558 |
+
# res = "".join([i for i in res if is_japanese_character(i)])
|
559 |
+
res = replace_punctuation(res)
|
560 |
+
return res
|
561 |
+
|
562 |
+
|
563 |
+
def distribute_phone(n_phone, n_word):
|
564 |
+
phones_per_word = [0] * n_word
|
565 |
+
for task in range(n_phone):
|
566 |
+
min_tasks = min(phones_per_word)
|
567 |
+
min_index = phones_per_word.index(min_tasks)
|
568 |
+
phones_per_word[min_index] += 1
|
569 |
+
return phones_per_word
|
570 |
+
|
571 |
+
import os
|
572 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
573 |
+
|
574 |
+
def g2p(norm_text):
|
575 |
+
sep_text, sep_kata = text2sep_kata(norm_text)
|
576 |
+
# print(sep_text, sep_kata)
|
577 |
+
sep_tokenized = [tokenizer.tokenize(i) for i in sep_text]
|
578 |
+
sep_phonemes = [kata2phoneme(i) for i in sep_kata]
|
579 |
+
#异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况
|
580 |
+
for i in sep_phonemes:
|
581 |
+
for j in i:
|
582 |
+
assert j in symbols, (sep_text, sep_kata, sep_phonemes)
|
583 |
+
|
584 |
+
# print(sep_tokenized, sep_phonemes)
|
585 |
+
#print(len(sep_tokenized), len(sep_phonemes))
|
586 |
+
word2ph = []
|
587 |
+
for token, phoneme in zip(sep_tokenized, sep_phonemes):
|
588 |
+
phone_len = len(phoneme)
|
589 |
+
word_len = len(token)
|
590 |
+
|
591 |
+
aaa = distribute_phone(phone_len, word_len)
|
592 |
+
word2ph += aaa
|
593 |
+
phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"]
|
594 |
+
tones = [0 for i in phones]
|
595 |
+
word2ph = [1] + word2ph + [1]
|
596 |
+
return phones, tones, word2ph
|
597 |
+
|
598 |
+
# def g2p(norm_text):
|
599 |
+
# tokenized = tokenizer.tokenize(norm_text)
|
600 |
+
# phs = []
|
601 |
+
# ph_groups = []
|
602 |
+
# for t in tokenized:
|
603 |
+
# if not t.startswith("#"):
|
604 |
+
# ph_groups.append([t])
|
605 |
+
# else:
|
606 |
+
# ph_groups[-1].append(t.replace("#", ""))
|
607 |
+
# word2ph = []
|
608 |
+
# for group in ph_groups:
|
609 |
+
# phonemes = kata2phoneme(text2kata("".join(group)))
|
610 |
+
# # phonemes = [i for i in phonemes if i in symbols]
|
611 |
+
# #print(phonemes)
|
612 |
+
# for i in phonemes:
|
613 |
+
# assert i in symbols, (group, norm_text, tokenized)
|
614 |
+
# phone_len = len(phonemes)
|
615 |
+
# word_len = len(group)
|
616 |
+
|
617 |
+
# aaa = distribute_phone(phone_len, word_len)
|
618 |
+
# word2ph += aaa
|
619 |
+
|
620 |
+
# phs += phonemes
|
621 |
+
# phones = ["_"] + phs + ["_"]
|
622 |
+
# tones = [0 for i in phones]
|
623 |
+
# word2ph = [1] + word2ph + [1]
|
624 |
+
# return phones, tones, word2ph
|
625 |
+
|
626 |
+
|
627 |
+
def g2p_nobert(norm_text):
|
628 |
+
norm_text = text_normalize(norm_text)
|
629 |
+
tokenized = norm_text.split(" ")
|
630 |
+
phs = []
|
631 |
+
ph_groups = []
|
632 |
+
for t in tokenized:
|
633 |
+
if not t.startswith("#"):
|
634 |
+
ph_groups.append([t])
|
635 |
+
else:
|
636 |
+
ph_groups[-1].append(t.replace("#", ""))
|
637 |
+
word2ph = []
|
638 |
+
for group in ph_groups:
|
639 |
+
phonemes = kata2phoneme(text2kata("".join(group)))
|
640 |
+
# phonemes = [i for i in phonemes if i in symbols]
|
641 |
+
#print(phonemes)
|
642 |
+
for i in phonemes:
|
643 |
+
assert i in symbols, (group, norm_text, tokenized)
|
644 |
+
phone_len = len(phonemes)
|
645 |
+
word_len = len(group)
|
646 |
+
|
647 |
+
aaa = distribute_phone(phone_len, word_len)
|
648 |
+
word2ph += aaa
|
649 |
+
|
650 |
+
phs += phonemes
|
651 |
+
phones = ["_"] + phs + ["_"]
|
652 |
+
tones = [0 for i in phones]
|
653 |
+
word2ph = [1] + word2ph + [1]
|
654 |
+
return phones, tones, word2ph
|
655 |
+
|
656 |
+
|
657 |
+
import os
|
658 |
+
if __name__ == "__main__":
|
659 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
660 |
+
#tokenizer = AutoTokenizer.from_pretrained("bert/bert-base-japanese-v3")
|
661 |
+
text = "これが先頭の景色……観覧車みたいです。童、小童!"
|
662 |
+
from text.japanese_bert import get_bert_feature
|
663 |
+
|
664 |
+
|
665 |
+
phones, tones, word2ph = g2p(text)
|
666 |
+
bert = get_bert_feature(text, word2ph)
|
667 |
+
|
668 |
+
print(phones, tones, word2ph,bert.shape)
|
text/japanese_bert.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
from text.japanese import text2sep_kata
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("./bert/bert-base-japanese-v3")
|
7 |
+
|
8 |
+
models = dict()
|
9 |
+
|
10 |
+
|
11 |
+
def get_bert_feature(text, word2ph, device=None):
|
12 |
+
sep_text,_ = text2sep_kata(text)
|
13 |
+
sep_tokens = [tokenizer.tokenize(t) for t in sep_text]
|
14 |
+
sep_ids = [tokenizer.convert_tokens_to_ids(t) for t in sep_tokens]
|
15 |
+
sep_ids = [2]+[item for sublist in sep_ids for item in sublist]+[3]
|
16 |
+
return get_bert_feature_with_token(sep_ids, word2ph, device)
|
17 |
+
|
18 |
+
|
19 |
+
# def get_bert_feature(text, word2ph, device=None):
|
20 |
+
# if (
|
21 |
+
# sys.platform == "darwin"
|
22 |
+
# and torch.backends.mps.is_available()
|
23 |
+
# and device == "cpu"
|
24 |
+
# ):
|
25 |
+
# device = "mps"
|
26 |
+
# if not device:
|
27 |
+
# device = "cuda"
|
28 |
+
# if device not in models.keys():
|
29 |
+
# models[device] = AutoModelForMaskedLM.from_pretrained(
|
30 |
+
# "cl-tohoku/bert-base-japanese-v3"
|
31 |
+
# ).to(device)
|
32 |
+
# with torch.no_grad():
|
33 |
+
# inputs = tokenizer(text, return_tensors="pt")
|
34 |
+
# for i in inputs:
|
35 |
+
# inputs[i] = inputs[i].to(device)
|
36 |
+
# res = models[device](**inputs, output_hidden_states=True)
|
37 |
+
# res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
38 |
+
# assert inputs["input_ids"].shape[-1] == len(word2ph)
|
39 |
+
# word2phone = word2ph
|
40 |
+
# phone_level_feature = []
|
41 |
+
# for i in range(len(word2phone)):
|
42 |
+
# repeat_feature = res[i].repeat(word2phone[i], 1)
|
43 |
+
# phone_level_feature.append(repeat_feature)
|
44 |
+
|
45 |
+
# phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
46 |
+
|
47 |
+
# return phone_level_feature.T
|
48 |
+
|
49 |
+
def get_bert_feature_with_token(tokens, word2ph, device=None):
|
50 |
+
if (
|
51 |
+
sys.platform == "darwin"
|
52 |
+
and torch.backends.mps.is_available()
|
53 |
+
and device == "cpu"
|
54 |
+
):
|
55 |
+
device = "mps"
|
56 |
+
if not device:
|
57 |
+
device = "cuda"
|
58 |
+
if device not in models.keys():
|
59 |
+
models[device] = AutoModelForMaskedLM.from_pretrained(
|
60 |
+
"./bert/bert-base-japanese-v3"
|
61 |
+
).to(device)
|
62 |
+
with torch.no_grad():
|
63 |
+
inputs = torch.tensor(tokens).to(device).unsqueeze(0)
|
64 |
+
token_type_ids = torch.zeros_like(inputs).to(device)
|
65 |
+
attention_mask = torch.ones_like(inputs).to(device)
|
66 |
+
inputs = {"input_ids": inputs, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
|
67 |
+
|
68 |
+
|
69 |
+
# for i in inputs:
|
70 |
+
# inputs[i] = inputs[i].to(device)
|
71 |
+
res = models[device](**inputs, output_hidden_states=True)
|
72 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
73 |
+
assert inputs["input_ids"].shape[-1] == len(word2ph)
|
74 |
+
word2phone = word2ph
|
75 |
+
phone_level_feature = []
|
76 |
+
for i in range(len(word2phone)):
|
77 |
+
repeat_feature = res[i].repeat(word2phone[i], 1)
|
78 |
+
phone_level_feature.append(repeat_feature)
|
79 |
+
|
80 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
81 |
+
|
82 |
+
return phone_level_feature.T
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
print(get_bert_feature("観覧車",[4,2]))
|
87 |
+
pass
|
text/opencpop-strict.txt
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a AA a
|
2 |
+
ai AA ai
|
3 |
+
an AA an
|
4 |
+
ang AA ang
|
5 |
+
ao AA ao
|
6 |
+
ba b a
|
7 |
+
bai b ai
|
8 |
+
ban b an
|
9 |
+
bang b ang
|
10 |
+
bao b ao
|
11 |
+
bei b ei
|
12 |
+
ben b en
|
13 |
+
beng b eng
|
14 |
+
bi b i
|
15 |
+
bian b ian
|
16 |
+
biao b iao
|
17 |
+
bie b ie
|
18 |
+
bin b in
|
19 |
+
bing b ing
|
20 |
+
bo b o
|
21 |
+
bu b u
|
22 |
+
ca c a
|
23 |
+
cai c ai
|
24 |
+
can c an
|
25 |
+
cang c ang
|
26 |
+
cao c ao
|
27 |
+
ce c e
|
28 |
+
cei c ei
|
29 |
+
cen c en
|
30 |
+
ceng c eng
|
31 |
+
cha ch a
|
32 |
+
chai ch ai
|
33 |
+
chan ch an
|
34 |
+
chang ch ang
|
35 |
+
chao ch ao
|
36 |
+
che ch e
|
37 |
+
chen ch en
|
38 |
+
cheng ch eng
|
39 |
+
chi ch ir
|
40 |
+
chong ch ong
|
41 |
+
chou ch ou
|
42 |
+
chu ch u
|
43 |
+
chua ch ua
|
44 |
+
chuai ch uai
|
45 |
+
chuan ch uan
|
46 |
+
chuang ch uang
|
47 |
+
chui ch ui
|
48 |
+
chun ch un
|
49 |
+
chuo ch uo
|
50 |
+
ci c i0
|
51 |
+
cong c ong
|
52 |
+
cou c ou
|
53 |
+
cu c u
|
54 |
+
cuan c uan
|
55 |
+
cui c ui
|
56 |
+
cun c un
|
57 |
+
cuo c uo
|
58 |
+
da d a
|
59 |
+
dai d ai
|
60 |
+
dan d an
|
61 |
+
dang d ang
|
62 |
+
dao d ao
|
63 |
+
de d e
|
64 |
+
dei d ei
|
65 |
+
den d en
|
66 |
+
deng d eng
|
67 |
+
di d i
|
68 |
+
dia d ia
|
69 |
+
dian d ian
|
70 |
+
diao d iao
|
71 |
+
die d ie
|
72 |
+
ding d ing
|
73 |
+
diu d iu
|
74 |
+
dong d ong
|
75 |
+
dou d ou
|
76 |
+
du d u
|
77 |
+
duan d uan
|
78 |
+
dui d ui
|
79 |
+
dun d un
|
80 |
+
duo d uo
|
81 |
+
e EE e
|
82 |
+
ei EE ei
|
83 |
+
en EE en
|
84 |
+
eng EE eng
|
85 |
+
er EE er
|
86 |
+
fa f a
|
87 |
+
fan f an
|
88 |
+
fang f ang
|
89 |
+
fei f ei
|
90 |
+
fen f en
|
91 |
+
feng f eng
|
92 |
+
fo f o
|
93 |
+
fou f ou
|
94 |
+
fu f u
|
95 |
+
ga g a
|
96 |
+
gai g ai
|
97 |
+
gan g an
|
98 |
+
gang g ang
|
99 |
+
gao g ao
|
100 |
+
ge g e
|
101 |
+
gei g ei
|
102 |
+
gen g en
|
103 |
+
geng g eng
|
104 |
+
gong g ong
|
105 |
+
gou g ou
|
106 |
+
gu g u
|
107 |
+
gua g ua
|
108 |
+
guai g uai
|
109 |
+
guan g uan
|
110 |
+
guang g uang
|
111 |
+
gui g ui
|
112 |
+
gun g un
|
113 |
+
guo g uo
|
114 |
+
ha h a
|
115 |
+
hai h ai
|
116 |
+
han h an
|
117 |
+
hang h ang
|
118 |
+
hao h ao
|
119 |
+
he h e
|
120 |
+
hei h ei
|
121 |
+
hen h en
|
122 |
+
heng h eng
|
123 |
+
hong h ong
|
124 |
+
hou h ou
|
125 |
+
hu h u
|
126 |
+
hua h ua
|
127 |
+
huai h uai
|
128 |
+
huan h uan
|
129 |
+
huang h uang
|
130 |
+
hui h ui
|
131 |
+
hun h un
|
132 |
+
huo h uo
|
133 |
+
ji j i
|
134 |
+
jia j ia
|
135 |
+
jian j ian
|
136 |
+
jiang j iang
|
137 |
+
jiao j iao
|
138 |
+
jie j ie
|
139 |
+
jin j in
|
140 |
+
jing j ing
|
141 |
+
jiong j iong
|
142 |
+
jiu j iu
|
143 |
+
ju j v
|
144 |
+
jv j v
|
145 |
+
juan j van
|
146 |
+
jvan j van
|
147 |
+
jue j ve
|
148 |
+
jve j ve
|
149 |
+
jun j vn
|
150 |
+
jvn j vn
|
151 |
+
ka k a
|
152 |
+
kai k ai
|
153 |
+
kan k an
|
154 |
+
kang k ang
|
155 |
+
kao k ao
|
156 |
+
ke k e
|
157 |
+
kei k ei
|
158 |
+
ken k en
|
159 |
+
keng k eng
|
160 |
+
kong k ong
|
161 |
+
kou k ou
|
162 |
+
ku k u
|
163 |
+
kua k ua
|
164 |
+
kuai k uai
|
165 |
+
kuan k uan
|
166 |
+
kuang k uang
|
167 |
+
kui k ui
|
168 |
+
kun k un
|
169 |
+
kuo k uo
|
170 |
+
la l a
|
171 |
+
lai l ai
|
172 |
+
lan l an
|
173 |
+
lang l ang
|
174 |
+
lao l ao
|
175 |
+
le l e
|
176 |
+
lei l ei
|
177 |
+
leng l eng
|
178 |
+
li l i
|
179 |
+
lia l ia
|
180 |
+
lian l ian
|
181 |
+
liang l iang
|
182 |
+
liao l iao
|
183 |
+
lie l ie
|
184 |
+
lin l in
|
185 |
+
ling l ing
|
186 |
+
liu l iu
|
187 |
+
lo l o
|
188 |
+
long l ong
|
189 |
+
lou l ou
|
190 |
+
lu l u
|
191 |
+
luan l uan
|
192 |
+
lun l un
|
193 |
+
luo l uo
|
194 |
+
lv l v
|
195 |
+
lve l ve
|
196 |
+
ma m a
|
197 |
+
mai m ai
|
198 |
+
man m an
|
199 |
+
mang m ang
|
200 |
+
mao m ao
|
201 |
+
me m e
|
202 |
+
mei m ei
|
203 |
+
men m en
|
204 |
+
meng m eng
|
205 |
+
mi m i
|
206 |
+
mian m ian
|
207 |
+
miao m iao
|
208 |
+
mie m ie
|
209 |
+
min m in
|
210 |
+
ming m ing
|
211 |
+
miu m iu
|
212 |
+
mo m o
|
213 |
+
mou m ou
|
214 |
+
mu m u
|
215 |
+
na n a
|
216 |
+
nai n ai
|
217 |
+
nan n an
|
218 |
+
nang n ang
|
219 |
+
nao n ao
|
220 |
+
ne n e
|
221 |
+
nei n ei
|
222 |
+
nen n en
|
223 |
+
neng n eng
|
224 |
+
ni n i
|
225 |
+
nian n ian
|
226 |
+
niang n iang
|
227 |
+
niao n iao
|
228 |
+
nie n ie
|
229 |
+
nin n in
|
230 |
+
ning n ing
|
231 |
+
niu n iu
|
232 |
+
nong n ong
|
233 |
+
nou n ou
|
234 |
+
nu n u
|
235 |
+
nuan n uan
|
236 |
+
nun n un
|
237 |
+
nuo n uo
|
238 |
+
nv n v
|
239 |
+
nve n ve
|
240 |
+
o OO o
|
241 |
+
ou OO ou
|
242 |
+
pa p a
|
243 |
+
pai p ai
|
244 |
+
pan p an
|
245 |
+
pang p ang
|
246 |
+
pao p ao
|
247 |
+
pei p ei
|
248 |
+
pen p en
|
249 |
+
peng p eng
|
250 |
+
pi p i
|
251 |
+
pian p ian
|
252 |
+
piao p iao
|
253 |
+
pie p ie
|
254 |
+
pin p in
|
255 |
+
ping p ing
|
256 |
+
po p o
|
257 |
+
pou p ou
|
258 |
+
pu p u
|
259 |
+
qi q i
|
260 |
+
qia q ia
|
261 |
+
qian q ian
|
262 |
+
qiang q iang
|
263 |
+
qiao q iao
|
264 |
+
qie q ie
|
265 |
+
qin q in
|
266 |
+
qing q ing
|
267 |
+
qiong q iong
|
268 |
+
qiu q iu
|
269 |
+
qu q v
|
270 |
+
qv q v
|
271 |
+
quan q van
|
272 |
+
qvan q van
|
273 |
+
que q ve
|
274 |
+
qve q ve
|
275 |
+
qun q vn
|
276 |
+
qvn q vn
|
277 |
+
ran r an
|
278 |
+
rang r ang
|
279 |
+
rao r ao
|
280 |
+
re r e
|
281 |
+
ren r en
|
282 |
+
reng r eng
|
283 |
+
ri r ir
|
284 |
+
rong r ong
|
285 |
+
rou r ou
|
286 |
+
ru r u
|
287 |
+
rua r ua
|
288 |
+
ruan r uan
|
289 |
+
rui r ui
|
290 |
+
run r un
|
291 |
+
ruo r uo
|
292 |
+
sa s a
|
293 |
+
sai s ai
|
294 |
+
san s an
|
295 |
+
sang s ang
|
296 |
+
sao s ao
|
297 |
+
se s e
|
298 |
+
sen s en
|
299 |
+
seng s eng
|
300 |
+
sha sh a
|
301 |
+
shai sh ai
|
302 |
+
shan sh an
|
303 |
+
shang sh ang
|
304 |
+
shao sh ao
|
305 |
+
she sh e
|
306 |
+
shei sh ei
|
307 |
+
shen sh en
|
308 |
+
sheng sh eng
|
309 |
+
shi sh ir
|
310 |
+
shou sh ou
|
311 |
+
shu sh u
|
312 |
+
shua sh ua
|
313 |
+
shuai sh uai
|
314 |
+
shuan sh uan
|
315 |
+
shuang sh uang
|
316 |
+
shui sh ui
|
317 |
+
shun sh un
|
318 |
+
shuo sh uo
|
319 |
+
si s i0
|
320 |
+
song s ong
|
321 |
+
sou s ou
|
322 |
+
su s u
|
323 |
+
suan s uan
|
324 |
+
sui s ui
|
325 |
+
sun s un
|
326 |
+
suo s uo
|
327 |
+
ta t a
|
328 |
+
tai t ai
|
329 |
+
tan t an
|
330 |
+
tang t ang
|
331 |
+
tao t ao
|
332 |
+
te t e
|
333 |
+
tei t ei
|
334 |
+
teng t eng
|
335 |
+
ti t i
|
336 |
+
tian t ian
|
337 |
+
tiao t iao
|
338 |
+
tie t ie
|
339 |
+
ting t ing
|
340 |
+
tong t ong
|
341 |
+
tou t ou
|
342 |
+
tu t u
|
343 |
+
tuan t uan
|
344 |
+
tui t ui
|
345 |
+
tun t un
|
346 |
+
tuo t uo
|
347 |
+
wa w a
|
348 |
+
wai w ai
|
349 |
+
wan w an
|
350 |
+
wang w ang
|
351 |
+
wei w ei
|
352 |
+
wen w en
|
353 |
+
weng w eng
|
354 |
+
wo w o
|
355 |
+
wu w u
|
356 |
+
xi x i
|
357 |
+
xia x ia
|
358 |
+
xian x ian
|
359 |
+
xiang x iang
|
360 |
+
xiao x iao
|
361 |
+
xie x ie
|
362 |
+
xin x in
|
363 |
+
xing x ing
|
364 |
+
xiong x iong
|
365 |
+
xiu x iu
|
366 |
+
xu x v
|
367 |
+
xv x v
|
368 |
+
xuan x van
|
369 |
+
xvan x van
|
370 |
+
xue x ve
|
371 |
+
xve x ve
|
372 |
+
xun x vn
|
373 |
+
xvn x vn
|
374 |
+
ya y a
|
375 |
+
yan y En
|
376 |
+
yang y ang
|
377 |
+
yao y ao
|
378 |
+
ye y E
|
379 |
+
yi y i
|
380 |
+
yin y in
|
381 |
+
ying y ing
|
382 |
+
yo y o
|
383 |
+
yong y ong
|
384 |
+
you y ou
|
385 |
+
yu y v
|
386 |
+
yv y v
|
387 |
+
yuan y van
|
388 |
+
yvan y van
|
389 |
+
yue y ve
|
390 |
+
yve y ve
|
391 |
+
yun y vn
|
392 |
+
yvn y vn
|
393 |
+
za z a
|
394 |
+
zai z ai
|
395 |
+
zan z an
|
396 |
+
zang z ang
|
397 |
+
zao z ao
|
398 |
+
ze z e
|
399 |
+
zei z ei
|
400 |
+
zen z en
|
401 |
+
zeng z eng
|
402 |
+
zha zh a
|
403 |
+
zhai zh ai
|
404 |
+
zhan zh an
|
405 |
+
zhang zh ang
|
406 |
+
zhao zh ao
|
407 |
+
zhe zh e
|
408 |
+
zhei zh ei
|
409 |
+
zhen zh en
|
410 |
+
zheng zh eng
|
411 |
+
zhi zh ir
|
412 |
+
zhong zh ong
|
413 |
+
zhou zh ou
|
414 |
+
zhu zh u
|
415 |
+
zhua zh ua
|
416 |
+
zhuai zh uai
|
417 |
+
zhuan zh uan
|
418 |
+
zhuang zh uang
|
419 |
+
zhui zh ui
|
420 |
+
zhun zh un
|
421 |
+
zhuo zh uo
|
422 |
+
zi z i0
|
423 |
+
zong z ong
|
424 |
+
zou z ou
|
425 |
+
zu z u
|
426 |
+
zuan z uan
|
427 |
+
zui z ui
|
428 |
+
zun z un
|
429 |
+
zuo z uo
|
text/symbols.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
punctuation = ["!", "?", "…", ",", ".", "'", "-"]
|
2 |
+
pu_symbols = punctuation + ["SP", "UNK"]
|
3 |
+
pad = "_"
|
4 |
+
|
5 |
+
# chinese
|
6 |
+
zh_symbols = [
|
7 |
+
"E",
|
8 |
+
"En",
|
9 |
+
"a",
|
10 |
+
"ai",
|
11 |
+
"an",
|
12 |
+
"ang",
|
13 |
+
"ao",
|
14 |
+
"b",
|
15 |
+
"c",
|
16 |
+
"ch",
|
17 |
+
"d",
|
18 |
+
"e",
|
19 |
+
"ei",
|
20 |
+
"en",
|
21 |
+
"eng",
|
22 |
+
"er",
|
23 |
+
"f",
|
24 |
+
"g",
|
25 |
+
"h",
|
26 |
+
"i",
|
27 |
+
"i0",
|
28 |
+
"ia",
|
29 |
+
"ian",
|
30 |
+
"iang",
|
31 |
+
"iao",
|
32 |
+
"ie",
|
33 |
+
"in",
|
34 |
+
"ing",
|
35 |
+
"iong",
|
36 |
+
"ir",
|
37 |
+
"iu",
|
38 |
+
"j",
|
39 |
+
"k",
|
40 |
+
"l",
|
41 |
+
"m",
|
42 |
+
"n",
|
43 |
+
"o",
|
44 |
+
"ong",
|
45 |
+
"ou",
|
46 |
+
"p",
|
47 |
+
"q",
|
48 |
+
"r",
|
49 |
+
"s",
|
50 |
+
"sh",
|
51 |
+
"t",
|
52 |
+
"u",
|
53 |
+
"ua",
|
54 |
+
"uai",
|
55 |
+
"uan",
|
56 |
+
"uang",
|
57 |
+
"ui",
|
58 |
+
"un",
|
59 |
+
"uo",
|
60 |
+
"v",
|
61 |
+
"van",
|
62 |
+
"ve",
|
63 |
+
"vn",
|
64 |
+
"w",
|
65 |
+
"x",
|
66 |
+
"y",
|
67 |
+
"z",
|
68 |
+
"zh",
|
69 |
+
"AA",
|
70 |
+
"EE",
|
71 |
+
"OO",
|
72 |
+
]
|
73 |
+
num_zh_tones = 6
|
74 |
+
|
75 |
+
# japanese
|
76 |
+
ja_symbols = [
|
77 |
+
"N",
|
78 |
+
"a",
|
79 |
+
"a:",
|
80 |
+
"b",
|
81 |
+
"by",
|
82 |
+
"ch",
|
83 |
+
"d",
|
84 |
+
"dy",
|
85 |
+
"e",
|
86 |
+
"e:",
|
87 |
+
"f",
|
88 |
+
"g",
|
89 |
+
"gy",
|
90 |
+
"h",
|
91 |
+
"hy",
|
92 |
+
"i",
|
93 |
+
"i:",
|
94 |
+
"j",
|
95 |
+
"k",
|
96 |
+
"ky",
|
97 |
+
"m",
|
98 |
+
"my",
|
99 |
+
"n",
|
100 |
+
"ny",
|
101 |
+
"o",
|
102 |
+
"o:",
|
103 |
+
"p",
|
104 |
+
"py",
|
105 |
+
"q",
|
106 |
+
"r",
|
107 |
+
"ry",
|
108 |
+
"s",
|
109 |
+
"sh",
|
110 |
+
"t",
|
111 |
+
"ts",
|
112 |
+
"ty",
|
113 |
+
"u",
|
114 |
+
"u:",
|
115 |
+
"w",
|
116 |
+
"y",
|
117 |
+
"z",
|
118 |
+
"zy",
|
119 |
+
]
|
120 |
+
num_ja_tones = 1
|
121 |
+
|
122 |
+
# English
|
123 |
+
en_symbols = [
|
124 |
+
"aa",
|
125 |
+
"ae",
|
126 |
+
"ah",
|
127 |
+
"ao",
|
128 |
+
"aw",
|
129 |
+
"ay",
|
130 |
+
"b",
|
131 |
+
"ch",
|
132 |
+
"d",
|
133 |
+
"dh",
|
134 |
+
"eh",
|
135 |
+
"er",
|
136 |
+
"ey",
|
137 |
+
"f",
|
138 |
+
"g",
|
139 |
+
"hh",
|
140 |
+
"ih",
|
141 |
+
"iy",
|
142 |
+
"jh",
|
143 |
+
"k",
|
144 |
+
"l",
|
145 |
+
"m",
|
146 |
+
"n",
|
147 |
+
"ng",
|
148 |
+
"ow",
|
149 |
+
"oy",
|
150 |
+
"p",
|
151 |
+
"r",
|
152 |
+
"s",
|
153 |
+
"sh",
|
154 |
+
"t",
|
155 |
+
"th",
|
156 |
+
"uh",
|
157 |
+
"uw",
|
158 |
+
"V",
|
159 |
+
"w",
|
160 |
+
"y",
|
161 |
+
"z",
|
162 |
+
"zh",
|
163 |
+
]
|
164 |
+
num_en_tones = 4
|
165 |
+
|
166 |
+
# combine all symbols
|
167 |
+
normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
|
168 |
+
symbols = [pad] + normal_symbols + pu_symbols
|
169 |
+
sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
|
170 |
+
|
171 |
+
# combine all tones
|
172 |
+
num_tones = num_zh_tones + num_ja_tones + num_en_tones
|
173 |
+
|
174 |
+
# language maps
|
175 |
+
language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
|
176 |
+
num_languages = len(language_id_map.keys())
|
177 |
+
|
178 |
+
language_tone_start_map = {
|
179 |
+
"ZH": 0,
|
180 |
+
"JP": num_zh_tones,
|
181 |
+
"EN": num_zh_tones + num_ja_tones,
|
182 |
+
}
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
a = set(zh_symbols)
|
186 |
+
b = set(en_symbols)
|
187 |
+
print(sorted(a & b))
|
text/tone_sandhi.py
ADDED
@@ -0,0 +1,769 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import List
|
15 |
+
from typing import Tuple
|
16 |
+
|
17 |
+
import jieba
|
18 |
+
from pypinyin import lazy_pinyin
|
19 |
+
from pypinyin import Style
|
20 |
+
|
21 |
+
|
22 |
+
class ToneSandhi:
|
23 |
+
def __init__(self):
|
24 |
+
self.must_neural_tone_words = {
|
25 |
+
"麻烦",
|
26 |
+
"麻利",
|
27 |
+
"鸳鸯",
|
28 |
+
"高粱",
|
29 |
+
"骨头",
|
30 |
+
"骆驼",
|
31 |
+
"马虎",
|
32 |
+
"首饰",
|
33 |
+
"馒头",
|
34 |
+
"馄饨",
|
35 |
+
"风筝",
|
36 |
+
"难为",
|
37 |
+
"队伍",
|
38 |
+
"阔气",
|
39 |
+
"闺女",
|
40 |
+
"门道",
|
41 |
+
"锄头",
|
42 |
+
"铺盖",
|
43 |
+
"铃铛",
|
44 |
+
"铁匠",
|
45 |
+
"钥匙",
|
46 |
+
"里脊",
|
47 |
+
"里头",
|
48 |
+
"部分",
|
49 |
+
"那么",
|
50 |
+
"道士",
|
51 |
+
"造化",
|
52 |
+
"迷糊",
|
53 |
+
"连累",
|
54 |
+
"这么",
|
55 |
+
"这个",
|
56 |
+
"运气",
|
57 |
+
"过去",
|
58 |
+
"软和",
|
59 |
+
"转悠",
|
60 |
+
"踏实",
|
61 |
+
"跳蚤",
|
62 |
+
"跟头",
|
63 |
+
"趔趄",
|
64 |
+
"财主",
|
65 |
+
"豆腐",
|
66 |
+
"讲究",
|
67 |
+
"记性",
|
68 |
+
"记号",
|
69 |
+
"认识",
|
70 |
+
"规矩",
|
71 |
+
"见识",
|
72 |
+
"裁缝",
|
73 |
+
"补丁",
|
74 |
+
"衣裳",
|
75 |
+
"衣服",
|
76 |
+
"衙门",
|
77 |
+
"街坊",
|
78 |
+
"行李",
|
79 |
+
"行当",
|
80 |
+
"蛤蟆",
|
81 |
+
"蘑菇",
|
82 |
+
"薄荷",
|
83 |
+
"葫芦",
|
84 |
+
"葡萄",
|
85 |
+
"萝卜",
|
86 |
+
"荸荠",
|
87 |
+
"苗条",
|
88 |
+
"苗头",
|
89 |
+
"苍蝇",
|
90 |
+
"芝麻",
|
91 |
+
"舒服",
|
92 |
+
"舒坦",
|
93 |
+
"舌头",
|
94 |
+
"自在",
|
95 |
+
"膏药",
|
96 |
+
"脾气",
|
97 |
+
"脑袋",
|
98 |
+
"脊梁",
|
99 |
+
"能耐",
|
100 |
+
"胳膊",
|
101 |
+
"胭脂",
|
102 |
+
"胡萝",
|
103 |
+
"胡琴",
|
104 |
+
"胡同",
|
105 |
+
"聪明",
|
106 |
+
"耽误",
|
107 |
+
"耽搁",
|
108 |
+
"耷拉",
|
109 |
+
"耳朵",
|
110 |
+
"老爷",
|
111 |
+
"老实",
|
112 |
+
"老婆",
|
113 |
+
"老头",
|
114 |
+
"老太",
|
115 |
+
"翻腾",
|
116 |
+
"罗嗦",
|
117 |
+
"罐头",
|
118 |
+
"编辑",
|
119 |
+
"结实",
|
120 |
+
"红火",
|
121 |
+
"累赘",
|
122 |
+
"糨糊",
|
123 |
+
"糊涂",
|
124 |
+
"精神",
|
125 |
+
"粮食",
|
126 |
+
"簸箕",
|
127 |
+
"篱笆",
|
128 |
+
"算计",
|
129 |
+
"算盘",
|
130 |
+
"答应",
|
131 |
+
"笤帚",
|
132 |
+
"笑语",
|
133 |
+
"笑话",
|
134 |
+
"窟窿",
|
135 |
+
"窝囊",
|
136 |
+
"窗户",
|
137 |
+
"稳当",
|
138 |
+
"稀罕",
|
139 |
+
"称呼",
|
140 |
+
"秧歌",
|
141 |
+
"秀气",
|
142 |
+
"秀才",
|
143 |
+
"福气",
|
144 |
+
"祖宗",
|
145 |
+
"砚台",
|
146 |
+
"码头",
|
147 |
+
"石榴",
|
148 |
+
"石头",
|
149 |
+
"石匠",
|
150 |
+
"知识",
|
151 |
+
"眼睛",
|
152 |
+
"眯缝",
|
153 |
+
"眨巴",
|
154 |
+
"眉毛",
|
155 |
+
"相声",
|
156 |
+
"盘算",
|
157 |
+
"白净",
|
158 |
+
"痢疾",
|
159 |
+
"痛快",
|
160 |
+
"疟疾",
|
161 |
+
"疙瘩",
|
162 |
+
"疏忽",
|
163 |
+
"畜生",
|
164 |
+
"生意",
|
165 |
+
"甘蔗",
|
166 |
+
"琵琶",
|
167 |
+
"琢磨",
|
168 |
+
"琉璃",
|
169 |
+
"玻璃",
|
170 |
+
"玫瑰",
|
171 |
+
"玄乎",
|
172 |
+
"狐狸",
|
173 |
+
"状元",
|
174 |
+
"特务",
|
175 |
+
"牲口",
|
176 |
+
"牙碜",
|
177 |
+
"牌楼",
|
178 |
+
"爽快",
|
179 |
+
"爱人",
|
180 |
+
"热闹",
|
181 |
+
"烧饼",
|
182 |
+
"烟筒",
|
183 |
+
"烂糊",
|
184 |
+
"点心",
|
185 |
+
"炊帚",
|
186 |
+
"灯笼",
|
187 |
+
"火候",
|
188 |
+
"漂亮",
|
189 |
+
"滑溜",
|
190 |
+
"溜达",
|
191 |
+
"温和",
|
192 |
+
"清楚",
|
193 |
+
"消息",
|
194 |
+
"浪头",
|
195 |
+
"活泼",
|
196 |
+
"比方",
|
197 |
+
"正经",
|
198 |
+
"欺负",
|
199 |
+
"模糊",
|
200 |
+
"槟榔",
|
201 |
+
"棺材",
|
202 |
+
"棒槌",
|
203 |
+
"棉花",
|
204 |
+
"核桃",
|
205 |
+
"栅栏",
|
206 |
+
"柴火",
|
207 |
+
"架势",
|
208 |
+
"枕头",
|
209 |
+
"枇杷",
|
210 |
+
"机灵",
|
211 |
+
"本事",
|
212 |
+
"木头",
|
213 |
+
"木匠",
|
214 |
+
"朋友",
|
215 |
+
"月饼",
|
216 |
+
"月亮",
|
217 |
+
"暖和",
|
218 |
+
"明白",
|
219 |
+
"时候",
|
220 |
+
"新鲜",
|
221 |
+
"故事",
|
222 |
+
"收拾",
|
223 |
+
"收成",
|
224 |
+
"提防",
|
225 |
+
"挖苦",
|
226 |
+
"挑剔",
|
227 |
+
"指甲",
|
228 |
+
"指头",
|
229 |
+
"拾掇",
|
230 |
+
"拳头",
|
231 |
+
"拨弄",
|
232 |
+
"招牌",
|
233 |
+
"招呼",
|
234 |
+
"抬举",
|
235 |
+
"护士",
|
236 |
+
"折腾",
|
237 |
+
"扫帚",
|
238 |
+
"打量",
|
239 |
+
"打算",
|
240 |
+
"打点",
|
241 |
+
"打扮",
|
242 |
+
"打听",
|
243 |
+
"打发",
|
244 |
+
"扎实",
|
245 |
+
"扁担",
|
246 |
+
"戒指",
|
247 |
+
"懒得",
|
248 |
+
"意识",
|
249 |
+
"意思",
|
250 |
+
"情形",
|
251 |
+
"悟性",
|
252 |
+
"怪物",
|
253 |
+
"思量",
|
254 |
+
"怎么",
|
255 |
+
"念头",
|
256 |
+
"念叨",
|
257 |
+
"快活",
|
258 |
+
"忙活",
|
259 |
+
"志气",
|
260 |
+
"心思",
|
261 |
+
"得罪",
|
262 |
+
"张罗",
|
263 |
+
"弟兄",
|
264 |
+
"开通",
|
265 |
+
"应酬",
|
266 |
+
"庄稼",
|
267 |
+
"干事",
|
268 |
+
"帮手",
|
269 |
+
"帐篷",
|
270 |
+
"希罕",
|
271 |
+
"师父",
|
272 |
+
"师傅",
|
273 |
+
"巴结",
|
274 |
+
"巴掌",
|
275 |
+
"差事",
|
276 |
+
"工夫",
|
277 |
+
"岁数",
|
278 |
+
"屁股",
|
279 |
+
"尾巴",
|
280 |
+
"少爷",
|
281 |
+
"小气",
|
282 |
+
"小伙",
|
283 |
+
"将就",
|
284 |
+
"对头",
|
285 |
+
"对付",
|
286 |
+
"寡妇",
|
287 |
+
"家伙",
|
288 |
+
"客气",
|
289 |
+
"实在",
|
290 |
+
"官司",
|
291 |
+
"学问",
|
292 |
+
"学生",
|
293 |
+
"字号",
|
294 |
+
"嫁妆",
|
295 |
+
"媳妇",
|
296 |
+
"媒人",
|
297 |
+
"婆家",
|
298 |
+
"娘家",
|
299 |
+
"委屈",
|
300 |
+
"姑娘",
|
301 |
+
"姐夫",
|
302 |
+
"妯娌",
|
303 |
+
"妥当",
|
304 |
+
"妖精",
|
305 |
+
"奴才",
|
306 |
+
"女婿",
|
307 |
+
"头发",
|
308 |
+
"太阳",
|
309 |
+
"大爷",
|
310 |
+
"大方",
|
311 |
+
"大意",
|
312 |
+
"大夫",
|
313 |
+
"多少",
|
314 |
+
"多么",
|
315 |
+
"外甥",
|
316 |
+
"壮实",
|
317 |
+
"地道",
|
318 |
+
"地方",
|
319 |
+
"在乎",
|
320 |
+
"困难",
|
321 |
+
"嘴巴",
|
322 |
+
"嘱咐",
|
323 |
+
"嘟囔",
|
324 |
+
"嘀咕",
|
325 |
+
"喜欢",
|
326 |
+
"喇嘛",
|
327 |
+
"喇叭",
|
328 |
+
"商量",
|
329 |
+
"唾沫",
|
330 |
+
"哑巴",
|
331 |
+
"哈欠",
|
332 |
+
"哆嗦",
|
333 |
+
"咳嗽",
|
334 |
+
"和尚",
|
335 |
+
"告诉",
|
336 |
+
"告示",
|
337 |
+
"含糊",
|
338 |
+
"吓唬",
|
339 |
+
"后头",
|
340 |
+
"名字",
|
341 |
+
"名堂",
|
342 |
+
"合同",
|
343 |
+
"吆喝",
|
344 |
+
"叫唤",
|
345 |
+
"口袋",
|
346 |
+
"厚道",
|
347 |
+
"厉害",
|
348 |
+
"千斤",
|
349 |
+
"包袱",
|
350 |
+
"包涵",
|
351 |
+
"匀称",
|
352 |
+
"勤快",
|
353 |
+
"动静",
|
354 |
+
"动弹",
|
355 |
+
"功夫",
|
356 |
+
"力气",
|
357 |
+
"前头",
|
358 |
+
"刺猬",
|
359 |
+
"刺激",
|
360 |
+
"别扭",
|
361 |
+
"利落",
|
362 |
+
"利索",
|
363 |
+
"利害",
|
364 |
+
"分析",
|
365 |
+
"出息",
|
366 |
+
"凑合",
|
367 |
+
"凉快",
|
368 |
+
"冷战",
|
369 |
+
"冤枉",
|
370 |
+
"冒失",
|
371 |
+
"养活",
|
372 |
+
"关系",
|
373 |
+
"先生",
|
374 |
+
"兄弟",
|
375 |
+
"便宜",
|
376 |
+
"使唤",
|
377 |
+
"佩服",
|
378 |
+
"作坊",
|
379 |
+
"体面",
|
380 |
+
"位置",
|
381 |
+
"似的",
|
382 |
+
"伙计",
|
383 |
+
"休息",
|
384 |
+
"什么",
|
385 |
+
"人家",
|
386 |
+
"亲戚",
|
387 |
+
"亲家",
|
388 |
+
"交情",
|
389 |
+
"云彩",
|
390 |
+
"事情",
|
391 |
+
"买卖",
|
392 |
+
"主意",
|
393 |
+
"丫头",
|
394 |
+
"丧气",
|
395 |
+
"两口",
|
396 |
+
"东西",
|
397 |
+
"东家",
|
398 |
+
"世故",
|
399 |
+
"不由",
|
400 |
+
"不在",
|
401 |
+
"下水",
|
402 |
+
"下巴",
|
403 |
+
"上头",
|
404 |
+
"上司",
|
405 |
+
"丈夫",
|
406 |
+
"丈人",
|
407 |
+
"一辈",
|
408 |
+
"那个",
|
409 |
+
"菩萨",
|
410 |
+
"父亲",
|
411 |
+
"母亲",
|
412 |
+
"咕噜",
|
413 |
+
"邋遢",
|
414 |
+
"费用",
|
415 |
+
"冤家",
|
416 |
+
"甜头",
|
417 |
+
"介绍",
|
418 |
+
"荒唐",
|
419 |
+
"大人",
|
420 |
+
"泥鳅",
|
421 |
+
"幸福",
|
422 |
+
"熟悉",
|
423 |
+
"计划",
|
424 |
+
"扑腾",
|
425 |
+
"蜡烛",
|
426 |
+
"姥爷",
|
427 |
+
"照顾",
|
428 |
+
"喉咙",
|
429 |
+
"吉他",
|
430 |
+
"弄堂",
|
431 |
+
"蚂蚱",
|
432 |
+
"凤凰",
|
433 |
+
"拖沓",
|
434 |
+
"寒碜",
|
435 |
+
"糟蹋",
|
436 |
+
"倒腾",
|
437 |
+
"报复",
|
438 |
+
"逻辑",
|
439 |
+
"盘缠",
|
440 |
+
"喽啰",
|
441 |
+
"牢骚",
|
442 |
+
"咖喱",
|
443 |
+
"扫把",
|
444 |
+
"惦记",
|
445 |
+
}
|
446 |
+
self.must_not_neural_tone_words = {
|
447 |
+
"男子",
|
448 |
+
"女子",
|
449 |
+
"分子",
|
450 |
+
"原子",
|
451 |
+
"量子",
|
452 |
+
"莲子",
|
453 |
+
"石子",
|
454 |
+
"瓜子",
|
455 |
+
"电子",
|
456 |
+
"人人",
|
457 |
+
"虎虎",
|
458 |
+
}
|
459 |
+
self.punc = ":,;。?!“”‘’':,;.?!"
|
460 |
+
|
461 |
+
# the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
|
462 |
+
# e.g.
|
463 |
+
# word: "家里"
|
464 |
+
# pos: "s"
|
465 |
+
# finals: ['ia1', 'i3']
|
466 |
+
def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
467 |
+
# reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
|
468 |
+
for j, item in enumerate(word):
|
469 |
+
if (
|
470 |
+
j - 1 >= 0
|
471 |
+
and item == word[j - 1]
|
472 |
+
and pos[0] in {"n", "v", "a"}
|
473 |
+
and word not in self.must_not_neural_tone_words
|
474 |
+
):
|
475 |
+
finals[j] = finals[j][:-1] + "5"
|
476 |
+
ge_idx = word.find("个")
|
477 |
+
if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
|
478 |
+
finals[-1] = finals[-1][:-1] + "5"
|
479 |
+
elif len(word) >= 1 and word[-1] in "的地得":
|
480 |
+
finals[-1] = finals[-1][:-1] + "5"
|
481 |
+
# e.g. 走了, 看着, 去过
|
482 |
+
# elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
|
483 |
+
# finals[-1] = finals[-1][:-1] + "5"
|
484 |
+
elif (
|
485 |
+
len(word) > 1
|
486 |
+
and word[-1] in "们子"
|
487 |
+
and pos in {"r", "n"}
|
488 |
+
and word not in self.must_not_neural_tone_words
|
489 |
+
):
|
490 |
+
finals[-1] = finals[-1][:-1] + "5"
|
491 |
+
# e.g. 桌上, 地下, 家里
|
492 |
+
elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
|
493 |
+
finals[-1] = finals[-1][:-1] + "5"
|
494 |
+
# e.g. 上来, 下去
|
495 |
+
elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
|
496 |
+
finals[-1] = finals[-1][:-1] + "5"
|
497 |
+
# 个做量词
|
498 |
+
elif (
|
499 |
+
ge_idx >= 1
|
500 |
+
and (word[ge_idx - 1].isnumeric() or word[ge_idx - 1] in "几有两半多各整每做是")
|
501 |
+
) or word == "个":
|
502 |
+
finals[ge_idx] = finals[ge_idx][:-1] + "5"
|
503 |
+
else:
|
504 |
+
if (
|
505 |
+
word in self.must_neural_tone_words
|
506 |
+
or word[-2:] in self.must_neural_tone_words
|
507 |
+
):
|
508 |
+
finals[-1] = finals[-1][:-1] + "5"
|
509 |
+
|
510 |
+
word_list = self._split_word(word)
|
511 |
+
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
512 |
+
for i, word in enumerate(word_list):
|
513 |
+
# conventional neural in Chinese
|
514 |
+
if (
|
515 |
+
word in self.must_neural_tone_words
|
516 |
+
or word[-2:] in self.must_neural_tone_words
|
517 |
+
):
|
518 |
+
finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
|
519 |
+
finals = sum(finals_list, [])
|
520 |
+
return finals
|
521 |
+
|
522 |
+
def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
523 |
+
# e.g. 看不懂
|
524 |
+
if len(word) == 3 and word[1] == "不":
|
525 |
+
finals[1] = finals[1][:-1] + "5"
|
526 |
+
else:
|
527 |
+
for i, char in enumerate(word):
|
528 |
+
# "不" before tone4 should be bu2, e.g. 不怕
|
529 |
+
if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
|
530 |
+
finals[i] = finals[i][:-1] + "2"
|
531 |
+
return finals
|
532 |
+
|
533 |
+
def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
534 |
+
# "一" in number sequences, e.g. 一零零, 二一零
|
535 |
+
if word.find("一") != -1 and all(
|
536 |
+
[item.isnumeric() for item in word if item != "一"]
|
537 |
+
):
|
538 |
+
return finals
|
539 |
+
# "一" between reduplication words should be yi5, e.g. 看一看
|
540 |
+
elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
|
541 |
+
finals[1] = finals[1][:-1] + "5"
|
542 |
+
# when "一" is ordinal word, it should be yi1
|
543 |
+
elif word.startswith("第一"):
|
544 |
+
finals[1] = finals[1][:-1] + "1"
|
545 |
+
else:
|
546 |
+
for i, char in enumerate(word):
|
547 |
+
if char == "一" and i + 1 < len(word):
|
548 |
+
# "一" before tone4 should be yi2, e.g. 一段
|
549 |
+
if finals[i + 1][-1] == "4":
|
550 |
+
finals[i] = finals[i][:-1] + "2"
|
551 |
+
# "一" before non-tone4 should be yi4, e.g. 一天
|
552 |
+
else:
|
553 |
+
# "一" 后面如果是标点,还读一声
|
554 |
+
if word[i + 1] not in self.punc:
|
555 |
+
finals[i] = finals[i][:-1] + "4"
|
556 |
+
return finals
|
557 |
+
|
558 |
+
def _split_word(self, word: str) -> List[str]:
|
559 |
+
word_list = jieba.cut_for_search(word)
|
560 |
+
word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
|
561 |
+
first_subword = word_list[0]
|
562 |
+
first_begin_idx = word.find(first_subword)
|
563 |
+
if first_begin_idx == 0:
|
564 |
+
second_subword = word[len(first_subword) :]
|
565 |
+
new_word_list = [first_subword, second_subword]
|
566 |
+
else:
|
567 |
+
second_subword = word[: -len(first_subword)]
|
568 |
+
new_word_list = [second_subword, first_subword]
|
569 |
+
return new_word_list
|
570 |
+
|
571 |
+
def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
|
572 |
+
if len(word) == 2 and self._all_tone_three(finals):
|
573 |
+
finals[0] = finals[0][:-1] + "2"
|
574 |
+
elif len(word) == 3:
|
575 |
+
word_list = self._split_word(word)
|
576 |
+
if self._all_tone_three(finals):
|
577 |
+
# disyllabic + monosyllabic, e.g. 蒙古/包
|
578 |
+
if len(word_list[0]) == 2:
|
579 |
+
finals[0] = finals[0][:-1] + "2"
|
580 |
+
finals[1] = finals[1][:-1] + "2"
|
581 |
+
# monosyllabic + disyllabic, e.g. 纸/老虎
|
582 |
+
elif len(word_list[0]) == 1:
|
583 |
+
finals[1] = finals[1][:-1] + "2"
|
584 |
+
else:
|
585 |
+
finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
|
586 |
+
if len(finals_list) == 2:
|
587 |
+
for i, sub in enumerate(finals_list):
|
588 |
+
# e.g. 所有/人
|
589 |
+
if self._all_tone_three(sub) and len(sub) == 2:
|
590 |
+
finals_list[i][0] = finals_list[i][0][:-1] + "2"
|
591 |
+
# e.g. 好/喜欢
|
592 |
+
elif (
|
593 |
+
i == 1
|
594 |
+
and not self._all_tone_three(sub)
|
595 |
+
and finals_list[i][0][-1] == "3"
|
596 |
+
and finals_list[0][-1][-1] == "3"
|
597 |
+
):
|
598 |
+
finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
|
599 |
+
finals = sum(finals_list, [])
|
600 |
+
# split idiom into two words who's length is 2
|
601 |
+
elif len(word) == 4:
|
602 |
+
finals_list = [finals[:2], finals[2:]]
|
603 |
+
finals = []
|
604 |
+
for sub in finals_list:
|
605 |
+
if self._all_tone_three(sub):
|
606 |
+
sub[0] = sub[0][:-1] + "2"
|
607 |
+
finals += sub
|
608 |
+
|
609 |
+
return finals
|
610 |
+
|
611 |
+
def _all_tone_three(self, finals: List[str]) -> bool:
|
612 |
+
return all(x[-1] == "3" for x in finals)
|
613 |
+
|
614 |
+
# merge "不" and the word behind it
|
615 |
+
# if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
|
616 |
+
def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
617 |
+
new_seg = []
|
618 |
+
last_word = ""
|
619 |
+
for word, pos in seg:
|
620 |
+
if last_word == "不":
|
621 |
+
word = last_word + word
|
622 |
+
if word != "不":
|
623 |
+
new_seg.append((word, pos))
|
624 |
+
last_word = word[:]
|
625 |
+
if last_word == "不":
|
626 |
+
new_seg.append((last_word, "d"))
|
627 |
+
last_word = ""
|
628 |
+
return new_seg
|
629 |
+
|
630 |
+
# function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
|
631 |
+
# function 2: merge single "一" and the word behind it
|
632 |
+
# if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
|
633 |
+
# e.g.
|
634 |
+
# input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
|
635 |
+
# output seg: [['听一听', 'v']]
|
636 |
+
def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
637 |
+
new_seg = []
|
638 |
+
# function 1
|
639 |
+
for i, (word, pos) in enumerate(seg):
|
640 |
+
if (
|
641 |
+
i - 1 >= 0
|
642 |
+
and word == "一"
|
643 |
+
and i + 1 < len(seg)
|
644 |
+
and seg[i - 1][0] == seg[i + 1][0]
|
645 |
+
and seg[i - 1][1] == "v"
|
646 |
+
):
|
647 |
+
new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
|
648 |
+
else:
|
649 |
+
if (
|
650 |
+
i - 2 >= 0
|
651 |
+
and seg[i - 1][0] == "一"
|
652 |
+
and seg[i - 2][0] == word
|
653 |
+
and pos == "v"
|
654 |
+
):
|
655 |
+
continue
|
656 |
+
else:
|
657 |
+
new_seg.append([word, pos])
|
658 |
+
seg = new_seg
|
659 |
+
new_seg = []
|
660 |
+
# function 2
|
661 |
+
for i, (word, pos) in enumerate(seg):
|
662 |
+
if new_seg and new_seg[-1][0] == "一":
|
663 |
+
new_seg[-1][0] = new_seg[-1][0] + word
|
664 |
+
else:
|
665 |
+
new_seg.append([word, pos])
|
666 |
+
return new_seg
|
667 |
+
|
668 |
+
# the first and the second words are all_tone_three
|
669 |
+
def _merge_continuous_three_tones(
|
670 |
+
self, seg: List[Tuple[str, str]]
|
671 |
+
) -> List[Tuple[str, str]]:
|
672 |
+
new_seg = []
|
673 |
+
sub_finals_list = [
|
674 |
+
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
675 |
+
for (word, pos) in seg
|
676 |
+
]
|
677 |
+
assert len(sub_finals_list) == len(seg)
|
678 |
+
merge_last = [False] * len(seg)
|
679 |
+
for i, (word, pos) in enumerate(seg):
|
680 |
+
if (
|
681 |
+
i - 1 >= 0
|
682 |
+
and self._all_tone_three(sub_finals_list[i - 1])
|
683 |
+
and self._all_tone_three(sub_finals_list[i])
|
684 |
+
and not merge_last[i - 1]
|
685 |
+
):
|
686 |
+
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
687 |
+
if (
|
688 |
+
not self._is_reduplication(seg[i - 1][0])
|
689 |
+
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
690 |
+
):
|
691 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
692 |
+
merge_last[i] = True
|
693 |
+
else:
|
694 |
+
new_seg.append([word, pos])
|
695 |
+
else:
|
696 |
+
new_seg.append([word, pos])
|
697 |
+
|
698 |
+
return new_seg
|
699 |
+
|
700 |
+
def _is_reduplication(self, word: str) -> bool:
|
701 |
+
return len(word) == 2 and word[0] == word[1]
|
702 |
+
|
703 |
+
# the last char of first word and the first char of second word is tone_three
|
704 |
+
def _merge_continuous_three_tones_2(
|
705 |
+
self, seg: List[Tuple[str, str]]
|
706 |
+
) -> List[Tuple[str, str]]:
|
707 |
+
new_seg = []
|
708 |
+
sub_finals_list = [
|
709 |
+
lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
|
710 |
+
for (word, pos) in seg
|
711 |
+
]
|
712 |
+
assert len(sub_finals_list) == len(seg)
|
713 |
+
merge_last = [False] * len(seg)
|
714 |
+
for i, (word, pos) in enumerate(seg):
|
715 |
+
if (
|
716 |
+
i - 1 >= 0
|
717 |
+
and sub_finals_list[i - 1][-1][-1] == "3"
|
718 |
+
and sub_finals_list[i][0][-1] == "3"
|
719 |
+
and not merge_last[i - 1]
|
720 |
+
):
|
721 |
+
# if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
|
722 |
+
if (
|
723 |
+
not self._is_reduplication(seg[i - 1][0])
|
724 |
+
and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
|
725 |
+
):
|
726 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
727 |
+
merge_last[i] = True
|
728 |
+
else:
|
729 |
+
new_seg.append([word, pos])
|
730 |
+
else:
|
731 |
+
new_seg.append([word, pos])
|
732 |
+
return new_seg
|
733 |
+
|
734 |
+
def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
735 |
+
new_seg = []
|
736 |
+
for i, (word, pos) in enumerate(seg):
|
737 |
+
if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
|
738 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
739 |
+
else:
|
740 |
+
new_seg.append([word, pos])
|
741 |
+
return new_seg
|
742 |
+
|
743 |
+
def _merge_reduplication(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
744 |
+
new_seg = []
|
745 |
+
for i, (word, pos) in enumerate(seg):
|
746 |
+
if new_seg and word == new_seg[-1][0]:
|
747 |
+
new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
|
748 |
+
else:
|
749 |
+
new_seg.append([word, pos])
|
750 |
+
return new_seg
|
751 |
+
|
752 |
+
def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
|
753 |
+
seg = self._merge_bu(seg)
|
754 |
+
try:
|
755 |
+
seg = self._merge_yi(seg)
|
756 |
+
except:
|
757 |
+
print("_merge_yi failed")
|
758 |
+
seg = self._merge_reduplication(seg)
|
759 |
+
seg = self._merge_continuous_three_tones(seg)
|
760 |
+
seg = self._merge_continuous_three_tones_2(seg)
|
761 |
+
seg = self._merge_er(seg)
|
762 |
+
return seg
|
763 |
+
|
764 |
+
def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
|
765 |
+
finals = self._bu_sandhi(word, finals)
|
766 |
+
finals = self._yi_sandhi(word, finals)
|
767 |
+
finals = self._neural_sandhi(word, pos, finals)
|
768 |
+
finals = self._three_sandhi(word, finals)
|
769 |
+
return finals
|
train_ms.py
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: E402
|
2 |
+
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from torch.utils.tensorboard import SummaryWriter
|
8 |
+
import torch.distributed as dist
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
from torch.cuda.amp import autocast, GradScaler
|
11 |
+
from tqdm import tqdm
|
12 |
+
import logging
|
13 |
+
|
14 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
15 |
+
import commons
|
16 |
+
import utils
|
17 |
+
from data_utils import (
|
18 |
+
TextAudioSpeakerLoader,
|
19 |
+
TextAudioSpeakerCollate,
|
20 |
+
DistributedBucketSampler,
|
21 |
+
)
|
22 |
+
from models import (
|
23 |
+
SynthesizerTrn,
|
24 |
+
MultiPeriodDiscriminator,
|
25 |
+
DurationDiscriminator,
|
26 |
+
)
|
27 |
+
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
28 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
29 |
+
from text.symbols import symbols
|
30 |
+
|
31 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
32 |
+
torch.backends.cudnn.allow_tf32 = (
|
33 |
+
True # If encontered training problem,please try to disable TF32.
|
34 |
+
)
|
35 |
+
torch.set_float32_matmul_precision("medium")
|
36 |
+
torch.backends.cudnn.benchmark = True
|
37 |
+
torch.backends.cuda.sdp_kernel("flash")
|
38 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
39 |
+
torch.backends.cuda.enable_mem_efficient_sdp(
|
40 |
+
True
|
41 |
+
) # Not available if torch version is lower than 2.0
|
42 |
+
torch.backends.cuda.enable_math_sdp(True)
|
43 |
+
global_step = 0
|
44 |
+
|
45 |
+
|
46 |
+
def run():
|
47 |
+
dist.init_process_group(
|
48 |
+
backend="gloo",
|
49 |
+
init_method='tcp://127.0.0.1:11451', # Due to some training problem,we proposed to use gloo instead of nccl.
|
50 |
+
rank=0,
|
51 |
+
world_size=1,
|
52 |
+
) # Use torchrun instead of mp.spawn
|
53 |
+
rank = dist.get_rank()
|
54 |
+
n_gpus = dist.get_world_size()
|
55 |
+
hps = utils.get_hparams()
|
56 |
+
torch.manual_seed(hps.train.seed)
|
57 |
+
torch.cuda.set_device(rank)
|
58 |
+
global global_step
|
59 |
+
if rank == 0:
|
60 |
+
logger = utils.get_logger(hps.model_dir)
|
61 |
+
logger.info(hps)
|
62 |
+
utils.check_git_hash(hps.model_dir)
|
63 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
64 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
65 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
66 |
+
train_sampler = DistributedBucketSampler(
|
67 |
+
train_dataset,
|
68 |
+
hps.train.batch_size,
|
69 |
+
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
70 |
+
num_replicas=n_gpus,
|
71 |
+
rank=rank,
|
72 |
+
shuffle=True,
|
73 |
+
)
|
74 |
+
collate_fn = TextAudioSpeakerCollate()
|
75 |
+
train_loader = DataLoader(
|
76 |
+
train_dataset,
|
77 |
+
num_workers=16,
|
78 |
+
shuffle=False,
|
79 |
+
pin_memory=True,
|
80 |
+
collate_fn=collate_fn,
|
81 |
+
batch_sampler=train_sampler,
|
82 |
+
persistent_workers=True,
|
83 |
+
prefetch_factor=4,
|
84 |
+
) # DataLoader config could be adjusted.
|
85 |
+
if rank == 0:
|
86 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
87 |
+
eval_loader = DataLoader(
|
88 |
+
eval_dataset,
|
89 |
+
num_workers=0,
|
90 |
+
shuffle=False,
|
91 |
+
batch_size=1,
|
92 |
+
pin_memory=True,
|
93 |
+
drop_last=False,
|
94 |
+
collate_fn=collate_fn,
|
95 |
+
)
|
96 |
+
if (
|
97 |
+
"use_noise_scaled_mas" in hps.model.keys()
|
98 |
+
and hps.model.use_noise_scaled_mas is True
|
99 |
+
):
|
100 |
+
print("Using noise scaled MAS for VITS2")
|
101 |
+
mas_noise_scale_initial = 0.01
|
102 |
+
noise_scale_delta = 2e-6
|
103 |
+
else:
|
104 |
+
print("Using normal MAS for VITS1")
|
105 |
+
mas_noise_scale_initial = 0.0
|
106 |
+
noise_scale_delta = 0.0
|
107 |
+
if (
|
108 |
+
"use_duration_discriminator" in hps.model.keys()
|
109 |
+
and hps.model.use_duration_discriminator is True
|
110 |
+
):
|
111 |
+
print("Using duration discriminator for VITS2")
|
112 |
+
net_dur_disc = DurationDiscriminator(
|
113 |
+
hps.model.hidden_channels,
|
114 |
+
hps.model.hidden_channels,
|
115 |
+
3,
|
116 |
+
0.1,
|
117 |
+
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
118 |
+
).cuda(rank)
|
119 |
+
if (
|
120 |
+
"use_spk_conditioned_encoder" in hps.model.keys()
|
121 |
+
and hps.model.use_spk_conditioned_encoder is True
|
122 |
+
):
|
123 |
+
if hps.data.n_speakers == 0:
|
124 |
+
raise ValueError(
|
125 |
+
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
print("Using normal encoder for VITS1")
|
129 |
+
|
130 |
+
net_g = SynthesizerTrn(
|
131 |
+
len(symbols),
|
132 |
+
hps.data.filter_length // 2 + 1,
|
133 |
+
hps.train.segment_size // hps.data.hop_length,
|
134 |
+
n_speakers=hps.data.n_speakers,
|
135 |
+
mas_noise_scale_initial=mas_noise_scale_initial,
|
136 |
+
noise_scale_delta=noise_scale_delta,
|
137 |
+
**hps.model,
|
138 |
+
).cuda(rank)
|
139 |
+
|
140 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
141 |
+
optim_g = torch.optim.AdamW(
|
142 |
+
filter(lambda p: p.requires_grad, net_g.parameters()),
|
143 |
+
hps.train.learning_rate,
|
144 |
+
betas=hps.train.betas,
|
145 |
+
eps=hps.train.eps,
|
146 |
+
)
|
147 |
+
optim_d = torch.optim.AdamW(
|
148 |
+
net_d.parameters(),
|
149 |
+
hps.train.learning_rate,
|
150 |
+
betas=hps.train.betas,
|
151 |
+
eps=hps.train.eps,
|
152 |
+
)
|
153 |
+
if net_dur_disc is not None:
|
154 |
+
optim_dur_disc = torch.optim.AdamW(
|
155 |
+
net_dur_disc.parameters(),
|
156 |
+
hps.train.learning_rate,
|
157 |
+
betas=hps.train.betas,
|
158 |
+
eps=hps.train.eps,
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
optim_dur_disc = None
|
162 |
+
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
163 |
+
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
164 |
+
if net_dur_disc is not None:
|
165 |
+
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
|
166 |
+
try:
|
167 |
+
if net_dur_disc is not None:
|
168 |
+
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
|
169 |
+
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
170 |
+
net_dur_disc,
|
171 |
+
optim_dur_disc,
|
172 |
+
skip_optimizer=hps.train.skip_optimizer
|
173 |
+
if "skip_optimizer" in hps.train
|
174 |
+
else True,
|
175 |
+
)
|
176 |
+
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
|
177 |
+
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
|
178 |
+
net_g,
|
179 |
+
optim_g,
|
180 |
+
skip_optimizer=hps.train.skip_optimizer
|
181 |
+
if "skip_optimizer" in hps.train
|
182 |
+
else True,
|
183 |
+
)
|
184 |
+
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
|
185 |
+
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
|
186 |
+
net_d,
|
187 |
+
optim_d,
|
188 |
+
skip_optimizer=hps.train.skip_optimizer
|
189 |
+
if "skip_optimizer" in hps.train
|
190 |
+
else True,
|
191 |
+
)
|
192 |
+
if not optim_g.param_groups[0].get("initial_lr"):
|
193 |
+
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
|
194 |
+
if not optim_d.param_groups[0].get("initial_lr"):
|
195 |
+
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
|
196 |
+
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
197 |
+
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
198 |
+
|
199 |
+
epoch_str = max(epoch_str, 1)
|
200 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
201 |
+
except Exception as e:
|
202 |
+
print(e)
|
203 |
+
epoch_str = 1
|
204 |
+
global_step = 0
|
205 |
+
|
206 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
207 |
+
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
208 |
+
)
|
209 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
210 |
+
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
211 |
+
)
|
212 |
+
if net_dur_disc is not None:
|
213 |
+
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
214 |
+
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
215 |
+
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
216 |
+
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
scheduler_dur_disc = None
|
220 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
221 |
+
|
222 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
223 |
+
if rank == 0:
|
224 |
+
train_and_evaluate(
|
225 |
+
rank,
|
226 |
+
epoch,
|
227 |
+
hps,
|
228 |
+
[net_g, net_d, net_dur_disc],
|
229 |
+
[optim_g, optim_d, optim_dur_disc],
|
230 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
231 |
+
scaler,
|
232 |
+
[train_loader, eval_loader],
|
233 |
+
logger,
|
234 |
+
[writer, writer_eval],
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
train_and_evaluate(
|
238 |
+
rank,
|
239 |
+
epoch,
|
240 |
+
hps,
|
241 |
+
[net_g, net_d, net_dur_disc],
|
242 |
+
[optim_g, optim_d, optim_dur_disc],
|
243 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
244 |
+
scaler,
|
245 |
+
[train_loader, None],
|
246 |
+
None,
|
247 |
+
None,
|
248 |
+
)
|
249 |
+
scheduler_g.step()
|
250 |
+
scheduler_d.step()
|
251 |
+
if net_dur_disc is not None:
|
252 |
+
scheduler_dur_disc.step()
|
253 |
+
|
254 |
+
|
255 |
+
def train_and_evaluate(
|
256 |
+
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
257 |
+
):
|
258 |
+
net_g, net_d, net_dur_disc = nets
|
259 |
+
optim_g, optim_d, optim_dur_disc = optims
|
260 |
+
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
|
261 |
+
train_loader, eval_loader = loaders
|
262 |
+
if writers is not None:
|
263 |
+
writer, writer_eval = writers
|
264 |
+
|
265 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
266 |
+
global global_step
|
267 |
+
|
268 |
+
net_g.train()
|
269 |
+
net_d.train()
|
270 |
+
if net_dur_disc is not None:
|
271 |
+
net_dur_disc.train()
|
272 |
+
for batch_idx, (
|
273 |
+
x,
|
274 |
+
x_lengths,
|
275 |
+
spec,
|
276 |
+
spec_lengths,
|
277 |
+
y,
|
278 |
+
y_lengths,
|
279 |
+
speakers,
|
280 |
+
tone,
|
281 |
+
language,
|
282 |
+
bert,
|
283 |
+
ja_bert,
|
284 |
+
) in tqdm(enumerate(train_loader)):
|
285 |
+
if net_g.module.use_noise_scaled_mas:
|
286 |
+
current_mas_noise_scale = (
|
287 |
+
net_g.module.mas_noise_scale_initial
|
288 |
+
- net_g.module.noise_scale_delta * global_step
|
289 |
+
)
|
290 |
+
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
291 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
292 |
+
rank, non_blocking=True
|
293 |
+
)
|
294 |
+
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
295 |
+
rank, non_blocking=True
|
296 |
+
)
|
297 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
298 |
+
rank, non_blocking=True
|
299 |
+
)
|
300 |
+
speakers = speakers.cuda(rank, non_blocking=True)
|
301 |
+
tone = tone.cuda(rank, non_blocking=True)
|
302 |
+
language = language.cuda(rank, non_blocking=True)
|
303 |
+
bert = bert.cuda(rank, non_blocking=True)
|
304 |
+
ja_bert = ja_bert.cuda(rank, non_blocking=True)
|
305 |
+
|
306 |
+
with autocast(enabled=hps.train.fp16_run):
|
307 |
+
(
|
308 |
+
y_hat,
|
309 |
+
l_length,
|
310 |
+
attn,
|
311 |
+
ids_slice,
|
312 |
+
x_mask,
|
313 |
+
z_mask,
|
314 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
315 |
+
(hidden_x, logw, logw_),
|
316 |
+
) = net_g(
|
317 |
+
x,
|
318 |
+
x_lengths,
|
319 |
+
spec,
|
320 |
+
spec_lengths,
|
321 |
+
speakers,
|
322 |
+
tone,
|
323 |
+
language,
|
324 |
+
bert,
|
325 |
+
ja_bert,
|
326 |
+
)
|
327 |
+
mel = spec_to_mel_torch(
|
328 |
+
spec,
|
329 |
+
hps.data.filter_length,
|
330 |
+
hps.data.n_mel_channels,
|
331 |
+
hps.data.sampling_rate,
|
332 |
+
hps.data.mel_fmin,
|
333 |
+
hps.data.mel_fmax,
|
334 |
+
)
|
335 |
+
y_mel = commons.slice_segments(
|
336 |
+
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
337 |
+
)
|
338 |
+
y_hat_mel = mel_spectrogram_torch(
|
339 |
+
y_hat.squeeze(1),
|
340 |
+
hps.data.filter_length,
|
341 |
+
hps.data.n_mel_channels,
|
342 |
+
hps.data.sampling_rate,
|
343 |
+
hps.data.hop_length,
|
344 |
+
hps.data.win_length,
|
345 |
+
hps.data.mel_fmin,
|
346 |
+
hps.data.mel_fmax,
|
347 |
+
)
|
348 |
+
|
349 |
+
y = commons.slice_segments(
|
350 |
+
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
351 |
+
) # slice
|
352 |
+
|
353 |
+
# Discriminator
|
354 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
355 |
+
with autocast(enabled=False):
|
356 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
357 |
+
y_d_hat_r, y_d_hat_g
|
358 |
+
)
|
359 |
+
loss_disc_all = loss_disc
|
360 |
+
if net_dur_disc is not None:
|
361 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
362 |
+
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
|
363 |
+
)
|
364 |
+
with autocast(enabled=False):
|
365 |
+
# TODO: I think need to mean using the mask, but for now, just mean all
|
366 |
+
(
|
367 |
+
loss_dur_disc,
|
368 |
+
losses_dur_disc_r,
|
369 |
+
losses_dur_disc_g,
|
370 |
+
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
371 |
+
loss_dur_disc_all = loss_dur_disc
|
372 |
+
optim_dur_disc.zero_grad()
|
373 |
+
scaler.scale(loss_dur_disc_all).backward()
|
374 |
+
scaler.unscale_(optim_dur_disc)
|
375 |
+
commons.clip_grad_value_(net_dur_disc.parameters(), None)
|
376 |
+
scaler.step(optim_dur_disc)
|
377 |
+
|
378 |
+
optim_d.zero_grad()
|
379 |
+
scaler.scale(loss_disc_all).backward()
|
380 |
+
scaler.unscale_(optim_d)
|
381 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
382 |
+
scaler.step(optim_d)
|
383 |
+
|
384 |
+
with autocast(enabled=hps.train.fp16_run):
|
385 |
+
# Generator
|
386 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
387 |
+
if net_dur_disc is not None:
|
388 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
|
389 |
+
with autocast(enabled=False):
|
390 |
+
loss_dur = torch.sum(l_length.float())
|
391 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
392 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
393 |
+
|
394 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
395 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
396 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
397 |
+
if net_dur_disc is not None:
|
398 |
+
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
399 |
+
loss_gen_all += loss_dur_gen
|
400 |
+
optim_g.zero_grad()
|
401 |
+
scaler.scale(loss_gen_all).backward()
|
402 |
+
scaler.unscale_(optim_g)
|
403 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
404 |
+
scaler.step(optim_g)
|
405 |
+
scaler.update()
|
406 |
+
|
407 |
+
if rank == 0:
|
408 |
+
if global_step % hps.train.log_interval == 0:
|
409 |
+
lr = optim_g.param_groups[0]["lr"]
|
410 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
411 |
+
logger.info(
|
412 |
+
"Train Epoch: {} [{:.0f}%]".format(
|
413 |
+
epoch, 100.0 * batch_idx / len(train_loader)
|
414 |
+
)
|
415 |
+
)
|
416 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
417 |
+
|
418 |
+
scalar_dict = {
|
419 |
+
"loss/g/total": loss_gen_all,
|
420 |
+
"loss/d/total": loss_disc_all,
|
421 |
+
"learning_rate": lr,
|
422 |
+
"grad_norm_d": grad_norm_d,
|
423 |
+
"grad_norm_g": grad_norm_g,
|
424 |
+
}
|
425 |
+
scalar_dict.update(
|
426 |
+
{
|
427 |
+
"loss/g/fm": loss_fm,
|
428 |
+
"loss/g/mel": loss_mel,
|
429 |
+
"loss/g/dur": loss_dur,
|
430 |
+
"loss/g/kl": loss_kl,
|
431 |
+
}
|
432 |
+
)
|
433 |
+
scalar_dict.update(
|
434 |
+
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
435 |
+
)
|
436 |
+
scalar_dict.update(
|
437 |
+
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
438 |
+
)
|
439 |
+
scalar_dict.update(
|
440 |
+
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
441 |
+
)
|
442 |
+
|
443 |
+
image_dict = {
|
444 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
445 |
+
y_mel[0].data.cpu().numpy()
|
446 |
+
),
|
447 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
448 |
+
y_hat_mel[0].data.cpu().numpy()
|
449 |
+
),
|
450 |
+
"all/mel": utils.plot_spectrogram_to_numpy(
|
451 |
+
mel[0].data.cpu().numpy()
|
452 |
+
),
|
453 |
+
"all/attn": utils.plot_alignment_to_numpy(
|
454 |
+
attn[0, 0].data.cpu().numpy()
|
455 |
+
),
|
456 |
+
}
|
457 |
+
utils.summarize(
|
458 |
+
writer=writer,
|
459 |
+
global_step=global_step,
|
460 |
+
images=image_dict,
|
461 |
+
scalars=scalar_dict,
|
462 |
+
)
|
463 |
+
|
464 |
+
if global_step % hps.train.eval_interval == 0:
|
465 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
466 |
+
utils.save_checkpoint(
|
467 |
+
net_g,
|
468 |
+
optim_g,
|
469 |
+
hps.train.learning_rate,
|
470 |
+
epoch,
|
471 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
472 |
+
)
|
473 |
+
utils.save_checkpoint(
|
474 |
+
net_d,
|
475 |
+
optim_d,
|
476 |
+
hps.train.learning_rate,
|
477 |
+
epoch,
|
478 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
479 |
+
)
|
480 |
+
if net_dur_disc is not None:
|
481 |
+
utils.save_checkpoint(
|
482 |
+
net_dur_disc,
|
483 |
+
optim_dur_disc,
|
484 |
+
hps.train.learning_rate,
|
485 |
+
epoch,
|
486 |
+
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
487 |
+
)
|
488 |
+
keep_ckpts = getattr(hps.train, "keep_ckpts", 5)
|
489 |
+
if keep_ckpts > 0:
|
490 |
+
utils.clean_checkpoints(
|
491 |
+
path_to_models=hps.model_dir,
|
492 |
+
n_ckpts_to_keep=keep_ckpts,
|
493 |
+
sort_by_time=True,
|
494 |
+
)
|
495 |
+
|
496 |
+
global_step += 1
|
497 |
+
|
498 |
+
if rank == 0:
|
499 |
+
logger.info("====> Epoch: {}".format(epoch))
|
500 |
+
|
501 |
+
|
502 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
503 |
+
generator.eval()
|
504 |
+
image_dict = {}
|
505 |
+
audio_dict = {}
|
506 |
+
print("Evaluating ...")
|
507 |
+
with torch.no_grad():
|
508 |
+
for batch_idx, (
|
509 |
+
x,
|
510 |
+
x_lengths,
|
511 |
+
spec,
|
512 |
+
spec_lengths,
|
513 |
+
y,
|
514 |
+
y_lengths,
|
515 |
+
speakers,
|
516 |
+
tone,
|
517 |
+
language,
|
518 |
+
bert,
|
519 |
+
ja_bert,
|
520 |
+
) in enumerate(eval_loader):
|
521 |
+
x, x_lengths = x.cuda(), x_lengths.cuda()
|
522 |
+
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
523 |
+
y, y_lengths = y.cuda(), y_lengths.cuda()
|
524 |
+
speakers = speakers.cuda()
|
525 |
+
bert = bert.cuda()
|
526 |
+
ja_bert = ja_bert.cuda()
|
527 |
+
tone = tone.cuda()
|
528 |
+
language = language.cuda()
|
529 |
+
for use_sdp in [True, False]:
|
530 |
+
y_hat, attn, mask, *_ = generator.module.infer(
|
531 |
+
x,
|
532 |
+
x_lengths,
|
533 |
+
speakers,
|
534 |
+
tone,
|
535 |
+
language,
|
536 |
+
bert,
|
537 |
+
ja_bert,
|
538 |
+
y=spec,
|
539 |
+
max_len=1000,
|
540 |
+
sdp_ratio=0.0 if not use_sdp else 1.0,
|
541 |
+
)
|
542 |
+
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
543 |
+
|
544 |
+
mel = spec_to_mel_torch(
|
545 |
+
spec,
|
546 |
+
hps.data.filter_length,
|
547 |
+
hps.data.n_mel_channels,
|
548 |
+
hps.data.sampling_rate,
|
549 |
+
hps.data.mel_fmin,
|
550 |
+
hps.data.mel_fmax,
|
551 |
+
)
|
552 |
+
y_hat_mel = mel_spectrogram_torch(
|
553 |
+
y_hat.squeeze(1).float(),
|
554 |
+
hps.data.filter_length,
|
555 |
+
hps.data.n_mel_channels,
|
556 |
+
hps.data.sampling_rate,
|
557 |
+
hps.data.hop_length,
|
558 |
+
hps.data.win_length,
|
559 |
+
hps.data.mel_fmin,
|
560 |
+
hps.data.mel_fmax,
|
561 |
+
)
|
562 |
+
image_dict.update(
|
563 |
+
{
|
564 |
+
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
565 |
+
y_hat_mel[0].cpu().numpy()
|
566 |
+
)
|
567 |
+
}
|
568 |
+
)
|
569 |
+
audio_dict.update(
|
570 |
+
{
|
571 |
+
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
|
572 |
+
0, :, : y_hat_lengths[0]
|
573 |
+
]
|
574 |
+
}
|
575 |
+
)
|
576 |
+
image_dict.update(
|
577 |
+
{
|
578 |
+
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
579 |
+
mel[0].cpu().numpy()
|
580 |
+
)
|
581 |
+
}
|
582 |
+
)
|
583 |
+
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
584 |
+
|
585 |
+
utils.summarize(
|
586 |
+
writer=writer_eval,
|
587 |
+
global_step=global_step,
|
588 |
+
images=image_dict,
|
589 |
+
audios=audio_dict,
|
590 |
+
audio_sampling_rate=hps.data.sampling_rate,
|
591 |
+
)
|
592 |
+
generator.train()
|
593 |
+
|
594 |
+
|
595 |
+
if __name__ == "__main__":
|
596 |
+
run()
|
train_ms_acc.py
ADDED
@@ -0,0 +1,623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa: E402
|
2 |
+
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from torch.utils.tensorboard import SummaryWriter
|
8 |
+
import torch.distributed as dist
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
from torch.cuda.amp import autocast, GradScaler
|
11 |
+
from tqdm import tqdm
|
12 |
+
import logging
|
13 |
+
|
14 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
15 |
+
import commons
|
16 |
+
import utils
|
17 |
+
from data_utils import (
|
18 |
+
TextAudioSpeakerLoader,
|
19 |
+
TextAudioSpeakerCollate,
|
20 |
+
DistributedBucketSampler,
|
21 |
+
)
|
22 |
+
from models import (
|
23 |
+
SynthesizerTrn,
|
24 |
+
MultiPeriodDiscriminator,
|
25 |
+
DurationDiscriminator,
|
26 |
+
)
|
27 |
+
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
28 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
29 |
+
from text.symbols import symbols
|
30 |
+
|
31 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
32 |
+
torch.backends.cudnn.allow_tf32 = (
|
33 |
+
True # If encontered training problem,please try to disable TF32.
|
34 |
+
)
|
35 |
+
torch.set_float32_matmul_precision("medium")
|
36 |
+
torch.backends.cudnn.benchmark = True
|
37 |
+
torch.backends.cuda.sdp_kernel("flash")
|
38 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
39 |
+
torch.backends.cuda.enable_mem_efficient_sdp(
|
40 |
+
True
|
41 |
+
) # Not available if torch version is lower than 2.0
|
42 |
+
torch.backends.cuda.enable_math_sdp(True)
|
43 |
+
global_step = 0
|
44 |
+
|
45 |
+
|
46 |
+
def run():
|
47 |
+
dist.init_process_group(
|
48 |
+
backend="gloo",
|
49 |
+
init_method='tcp://127.0.0.1:11451', # Due to some training problem,we proposed to use gloo instead of nccl.
|
50 |
+
rank=0,
|
51 |
+
world_size=1,
|
52 |
+
) # Use torchrun instead of mp.spawn
|
53 |
+
rank = dist.get_rank()
|
54 |
+
n_gpus = dist.get_world_size()
|
55 |
+
hps = utils.get_hparams()
|
56 |
+
torch.manual_seed(hps.train.seed)
|
57 |
+
torch.cuda.set_device(rank)
|
58 |
+
global global_step
|
59 |
+
if rank == 0:
|
60 |
+
logger = utils.get_logger(hps.model_dir)
|
61 |
+
logger.info(hps)
|
62 |
+
utils.check_git_hash(hps.model_dir)
|
63 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
64 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
65 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
66 |
+
train_sampler = DistributedBucketSampler(
|
67 |
+
train_dataset,
|
68 |
+
hps.train.batch_size,
|
69 |
+
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
70 |
+
num_replicas=n_gpus,
|
71 |
+
rank=rank,
|
72 |
+
shuffle=True,
|
73 |
+
)
|
74 |
+
collate_fn = TextAudioSpeakerCollate()
|
75 |
+
train_loader = DataLoader(
|
76 |
+
train_dataset,
|
77 |
+
num_workers=16,
|
78 |
+
shuffle=False,
|
79 |
+
pin_memory=True,
|
80 |
+
collate_fn=collate_fn,
|
81 |
+
batch_sampler=train_sampler,
|
82 |
+
persistent_workers=True,
|
83 |
+
prefetch_factor=4,
|
84 |
+
) # DataLoader config could be adjusted.
|
85 |
+
if rank == 0:
|
86 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
87 |
+
eval_loader = DataLoader(
|
88 |
+
eval_dataset,
|
89 |
+
num_workers=0,
|
90 |
+
shuffle=False,
|
91 |
+
batch_size=1,
|
92 |
+
pin_memory=True,
|
93 |
+
drop_last=False,
|
94 |
+
collate_fn=collate_fn,
|
95 |
+
)
|
96 |
+
if (
|
97 |
+
"use_noise_scaled_mas" in hps.model.keys()
|
98 |
+
and hps.model.use_noise_scaled_mas is True
|
99 |
+
):
|
100 |
+
print("Using noise scaled MAS for VITS2")
|
101 |
+
mas_noise_scale_initial = 0.01
|
102 |
+
noise_scale_delta = 2e-6
|
103 |
+
else:
|
104 |
+
print("Using normal MAS for VITS1")
|
105 |
+
mas_noise_scale_initial = 0.0
|
106 |
+
noise_scale_delta = 0.0
|
107 |
+
if (
|
108 |
+
"use_duration_discriminator" in hps.model.keys()
|
109 |
+
and hps.model.use_duration_discriminator is True
|
110 |
+
):
|
111 |
+
print("Using duration discriminator for VITS2")
|
112 |
+
net_dur_disc = DurationDiscriminator(
|
113 |
+
hps.model.hidden_channels,
|
114 |
+
hps.model.hidden_channels,
|
115 |
+
3,
|
116 |
+
0.1,
|
117 |
+
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
118 |
+
).cuda(rank)
|
119 |
+
if (
|
120 |
+
"use_spk_conditioned_encoder" in hps.model.keys()
|
121 |
+
and hps.model.use_spk_conditioned_encoder is True
|
122 |
+
):
|
123 |
+
if hps.data.n_speakers == 0:
|
124 |
+
raise ValueError(
|
125 |
+
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
print("Using normal encoder for VITS1")
|
129 |
+
|
130 |
+
net_g = SynthesizerTrn(
|
131 |
+
len(symbols),
|
132 |
+
hps.data.filter_length // 2 + 1,
|
133 |
+
hps.train.segment_size // hps.data.hop_length,
|
134 |
+
n_speakers=hps.data.n_speakers,
|
135 |
+
mas_noise_scale_initial=mas_noise_scale_initial,
|
136 |
+
noise_scale_delta=noise_scale_delta,
|
137 |
+
**hps.model,
|
138 |
+
).cuda(rank)
|
139 |
+
|
140 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
141 |
+
optim_g = torch.optim.AdamW(
|
142 |
+
filter(lambda p: p.requires_grad, net_g.parameters()),
|
143 |
+
hps.train.learning_rate,
|
144 |
+
betas=hps.train.betas,
|
145 |
+
eps=hps.train.eps,
|
146 |
+
)
|
147 |
+
optim_d = torch.optim.AdamW(
|
148 |
+
net_d.parameters(),
|
149 |
+
hps.train.learning_rate,
|
150 |
+
betas=hps.train.betas,
|
151 |
+
eps=hps.train.eps,
|
152 |
+
)
|
153 |
+
if net_dur_disc is not None:
|
154 |
+
optim_dur_disc = torch.optim.AdamW(
|
155 |
+
net_dur_disc.parameters(),
|
156 |
+
hps.train.learning_rate,
|
157 |
+
betas=hps.train.betas,
|
158 |
+
eps=hps.train.eps,
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
optim_dur_disc = None
|
162 |
+
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
163 |
+
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
164 |
+
if net_dur_disc is not None:
|
165 |
+
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
|
166 |
+
try:
|
167 |
+
if net_dur_disc is not None:
|
168 |
+
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
|
169 |
+
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
170 |
+
net_dur_disc,
|
171 |
+
optim_dur_disc,
|
172 |
+
skip_optimizer=hps.train.skip_optimizer
|
173 |
+
if "skip_optimizer" in hps.train
|
174 |
+
else True,
|
175 |
+
)
|
176 |
+
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
|
177 |
+
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
|
178 |
+
net_g,
|
179 |
+
optim_g,
|
180 |
+
skip_optimizer=hps.train.skip_optimizer
|
181 |
+
if "skip_optimizer" in hps.train
|
182 |
+
else True,
|
183 |
+
)
|
184 |
+
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
|
185 |
+
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
|
186 |
+
net_d,
|
187 |
+
optim_d,
|
188 |
+
skip_optimizer=hps.train.skip_optimizer
|
189 |
+
if "skip_optimizer" in hps.train
|
190 |
+
else True,
|
191 |
+
)
|
192 |
+
if not optim_g.param_groups[0].get("initial_lr"):
|
193 |
+
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
|
194 |
+
if not optim_d.param_groups[0].get("initial_lr"):
|
195 |
+
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
|
196 |
+
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
197 |
+
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
198 |
+
|
199 |
+
epoch_str = max(epoch_str, 1)
|
200 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
201 |
+
except Exception as e:
|
202 |
+
print(e)
|
203 |
+
epoch_str = 1
|
204 |
+
global_step = 0
|
205 |
+
|
206 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
207 |
+
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
208 |
+
)
|
209 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
210 |
+
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
211 |
+
)
|
212 |
+
if net_dur_disc is not None:
|
213 |
+
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
214 |
+
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
215 |
+
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
216 |
+
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
scheduler_dur_disc = None
|
220 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
226 |
+
if rank == 0:
|
227 |
+
train_and_evaluate(
|
228 |
+
rank,
|
229 |
+
epoch,
|
230 |
+
hps,
|
231 |
+
[net_g, net_d, net_dur_disc],
|
232 |
+
[optim_g, optim_d, optim_dur_disc],
|
233 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
234 |
+
scaler,
|
235 |
+
[train_loader, eval_loader],
|
236 |
+
logger,
|
237 |
+
[writer, writer_eval],
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
train_and_evaluate(
|
241 |
+
rank,
|
242 |
+
epoch,
|
243 |
+
hps,
|
244 |
+
[net_g, net_d, net_dur_disc],
|
245 |
+
[optim_g, optim_d, optim_dur_disc],
|
246 |
+
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
247 |
+
scaler,
|
248 |
+
[train_loader, None],
|
249 |
+
None,
|
250 |
+
None,
|
251 |
+
)
|
252 |
+
scheduler_g.step()
|
253 |
+
scheduler_d.step()
|
254 |
+
if net_dur_disc is not None:
|
255 |
+
scheduler_dur_disc.step()
|
256 |
+
|
257 |
+
|
258 |
+
__ACCUMULATION_STEP__ = 6
|
259 |
+
__CURRENT_ACCUMULATION_STEP__ = 0
|
260 |
+
|
261 |
+
def train_and_evaluate(
|
262 |
+
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
263 |
+
):
|
264 |
+
global __ACCUMULATION_STEP__
|
265 |
+
global __CURRENT_ACCUMULATION_STEP__
|
266 |
+
net_g, net_d, net_dur_disc = nets
|
267 |
+
optim_g, optim_d, optim_dur_disc = optims
|
268 |
+
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
|
269 |
+
train_loader, eval_loader = loaders
|
270 |
+
if writers is not None:
|
271 |
+
writer, writer_eval = writers
|
272 |
+
|
273 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
274 |
+
global global_step
|
275 |
+
|
276 |
+
net_g.train()
|
277 |
+
net_d.train()
|
278 |
+
if net_dur_disc is not None:
|
279 |
+
net_dur_disc.train()
|
280 |
+
for batch_idx, (
|
281 |
+
x,
|
282 |
+
x_lengths,
|
283 |
+
spec,
|
284 |
+
spec_lengths,
|
285 |
+
y,
|
286 |
+
y_lengths,
|
287 |
+
speakers,
|
288 |
+
tone,
|
289 |
+
language,
|
290 |
+
bert,
|
291 |
+
ja_bert,
|
292 |
+
) in tqdm(enumerate(train_loader)):
|
293 |
+
if net_g.module.use_noise_scaled_mas:
|
294 |
+
current_mas_noise_scale = (
|
295 |
+
net_g.module.mas_noise_scale_initial
|
296 |
+
- net_g.module.noise_scale_delta * global_step
|
297 |
+
)
|
298 |
+
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
299 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
300 |
+
rank, non_blocking=True
|
301 |
+
)
|
302 |
+
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
303 |
+
rank, non_blocking=True
|
304 |
+
)
|
305 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
306 |
+
rank, non_blocking=True
|
307 |
+
)
|
308 |
+
speakers = speakers.cuda(rank, non_blocking=True)
|
309 |
+
tone = tone.cuda(rank, non_blocking=True)
|
310 |
+
language = language.cuda(rank, non_blocking=True)
|
311 |
+
bert = bert.cuda(rank, non_blocking=True)
|
312 |
+
ja_bert = ja_bert.cuda(rank, non_blocking=True)
|
313 |
+
|
314 |
+
with autocast(enabled=hps.train.fp16_run):
|
315 |
+
(
|
316 |
+
y_hat,
|
317 |
+
l_length,
|
318 |
+
attn,
|
319 |
+
ids_slice,
|
320 |
+
x_mask,
|
321 |
+
z_mask,
|
322 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
323 |
+
(hidden_x, logw, logw_),
|
324 |
+
) = net_g(
|
325 |
+
x,
|
326 |
+
x_lengths,
|
327 |
+
spec,
|
328 |
+
spec_lengths,
|
329 |
+
speakers,
|
330 |
+
tone,
|
331 |
+
language,
|
332 |
+
bert,
|
333 |
+
ja_bert,
|
334 |
+
)
|
335 |
+
mel = spec_to_mel_torch(
|
336 |
+
spec,
|
337 |
+
hps.data.filter_length,
|
338 |
+
hps.data.n_mel_channels,
|
339 |
+
hps.data.sampling_rate,
|
340 |
+
hps.data.mel_fmin,
|
341 |
+
hps.data.mel_fmax,
|
342 |
+
)
|
343 |
+
y_mel = commons.slice_segments(
|
344 |
+
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
345 |
+
)
|
346 |
+
y_hat_mel = mel_spectrogram_torch(
|
347 |
+
y_hat.squeeze(1),
|
348 |
+
hps.data.filter_length,
|
349 |
+
hps.data.n_mel_channels,
|
350 |
+
hps.data.sampling_rate,
|
351 |
+
hps.data.hop_length,
|
352 |
+
hps.data.win_length,
|
353 |
+
hps.data.mel_fmin,
|
354 |
+
hps.data.mel_fmax,
|
355 |
+
)
|
356 |
+
|
357 |
+
y = commons.slice_segments(
|
358 |
+
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
359 |
+
) # slice
|
360 |
+
|
361 |
+
# Discriminator
|
362 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
363 |
+
with autocast(enabled=False):
|
364 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
365 |
+
y_d_hat_r, y_d_hat_g
|
366 |
+
)
|
367 |
+
loss_disc_all = loss_disc
|
368 |
+
if net_dur_disc is not None:
|
369 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
370 |
+
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
|
371 |
+
)
|
372 |
+
with autocast(enabled=False):
|
373 |
+
# TODO: I think need to mean using the mask, but for now, just mean all
|
374 |
+
(
|
375 |
+
loss_dur_disc,
|
376 |
+
losses_dur_disc_r,
|
377 |
+
losses_dur_disc_g,
|
378 |
+
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
379 |
+
loss_dur_disc_all = loss_dur_disc
|
380 |
+
optim_dur_disc.zero_grad()
|
381 |
+
scaler.scale(loss_dur_disc_all).backward()
|
382 |
+
scaler.unscale_(optim_dur_disc)
|
383 |
+
commons.clip_grad_value_(net_dur_disc.parameters(), None)
|
384 |
+
scaler.step(optim_dur_disc)
|
385 |
+
|
386 |
+
|
387 |
+
|
388 |
+
scaler.scale(loss_disc_all/__ACCUMULATION_STEP__).backward()
|
389 |
+
__CURRENT_ACCUMULATION_STEP__ += 1
|
390 |
+
|
391 |
+
if __CURRENT_ACCUMULATION_STEP__ == __ACCUMULATION_STEP__:
|
392 |
+
__CURRENT_ACCUMULATION_STEP__ = 0
|
393 |
+
|
394 |
+
scaler.unscale_(optim_d)
|
395 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
396 |
+
scaler.step(optim_d)
|
397 |
+
optim_d.zero_grad()
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
|
402 |
+
with autocast(enabled=hps.train.fp16_run):
|
403 |
+
# Generator
|
404 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
405 |
+
if net_dur_disc is not None:
|
406 |
+
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
|
407 |
+
with autocast(enabled=False):
|
408 |
+
loss_dur = torch.sum(l_length.float())
|
409 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
410 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
411 |
+
|
412 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
413 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
414 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
415 |
+
if net_dur_disc is not None:
|
416 |
+
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
417 |
+
loss_gen_all += loss_dur_gen
|
418 |
+
|
419 |
+
|
420 |
+
scaler.scale(loss_gen_all/__ACCUMULATION_STEP__).backward()
|
421 |
+
if __CURRENT_ACCUMULATION_STEP__ == __ACCUMULATION_STEP__:
|
422 |
+
__CURRENT_ACCUMULATION_STEP__ = 0
|
423 |
+
|
424 |
+
scaler.unscale_(optim_g)
|
425 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
426 |
+
scaler.step(optim_g)
|
427 |
+
scaler.update()
|
428 |
+
optim_g.zero_grad()
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
|
433 |
+
if rank == 0:
|
434 |
+
if (global_step-1) % hps.train.log_interval == 0:
|
435 |
+
lr = optim_g.param_groups[0]["lr"]
|
436 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
437 |
+
logger.info(
|
438 |
+
"Train Epoch: {} [{:.0f}%]".format(
|
439 |
+
epoch, 100.0 * batch_idx / len(train_loader)
|
440 |
+
)
|
441 |
+
)
|
442 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
443 |
+
|
444 |
+
scalar_dict = {
|
445 |
+
"loss/g/total": loss_gen_all,
|
446 |
+
"loss/d/total": loss_disc_all,
|
447 |
+
"learning_rate": lr,
|
448 |
+
"grad_norm_d": grad_norm_d,
|
449 |
+
"grad_norm_g": grad_norm_g,
|
450 |
+
}
|
451 |
+
scalar_dict.update(
|
452 |
+
{
|
453 |
+
"loss/g/fm": loss_fm,
|
454 |
+
"loss/g/mel": loss_mel,
|
455 |
+
"loss/g/dur": loss_dur,
|
456 |
+
"loss/g/kl": loss_kl,
|
457 |
+
}
|
458 |
+
)
|
459 |
+
scalar_dict.update(
|
460 |
+
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
461 |
+
)
|
462 |
+
scalar_dict.update(
|
463 |
+
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
464 |
+
)
|
465 |
+
scalar_dict.update(
|
466 |
+
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
467 |
+
)
|
468 |
+
|
469 |
+
image_dict = {
|
470 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
471 |
+
y_mel[0].data.cpu().numpy()
|
472 |
+
),
|
473 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
474 |
+
y_hat_mel[0].data.cpu().numpy()
|
475 |
+
),
|
476 |
+
"all/mel": utils.plot_spectrogram_to_numpy(
|
477 |
+
mel[0].data.cpu().numpy()
|
478 |
+
),
|
479 |
+
"all/attn": utils.plot_alignment_to_numpy(
|
480 |
+
attn[0, 0].data.cpu().numpy()
|
481 |
+
),
|
482 |
+
}
|
483 |
+
utils.summarize(
|
484 |
+
writer=writer,
|
485 |
+
global_step=global_step,
|
486 |
+
images=image_dict,
|
487 |
+
scalars=scalar_dict,
|
488 |
+
)
|
489 |
+
|
490 |
+
if (global_step-1) % hps.train.eval_interval == 0:
|
491 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
492 |
+
utils.save_checkpoint(
|
493 |
+
net_g,
|
494 |
+
optim_g,
|
495 |
+
hps.train.learning_rate,
|
496 |
+
epoch,
|
497 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
498 |
+
)
|
499 |
+
utils.save_checkpoint(
|
500 |
+
net_d,
|
501 |
+
optim_d,
|
502 |
+
hps.train.learning_rate,
|
503 |
+
epoch,
|
504 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
505 |
+
)
|
506 |
+
if net_dur_disc is not None:
|
507 |
+
utils.save_checkpoint(
|
508 |
+
net_dur_disc,
|
509 |
+
optim_dur_disc,
|
510 |
+
hps.train.learning_rate,
|
511 |
+
epoch,
|
512 |
+
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
513 |
+
)
|
514 |
+
keep_ckpts = getattr(hps.train, "keep_ckpts", 5)
|
515 |
+
if keep_ckpts > 0:
|
516 |
+
utils.clean_checkpoints(
|
517 |
+
path_to_models=hps.model_dir,
|
518 |
+
n_ckpts_to_keep=keep_ckpts,
|
519 |
+
sort_by_time=True,
|
520 |
+
)
|
521 |
+
|
522 |
+
global_step += 1
|
523 |
+
|
524 |
+
if rank == 0:
|
525 |
+
logger.info("====> Epoch: {} ===>{}".format(epoch, __CURRENT_ACCUMULATION_STEP__))
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
530 |
+
generator.eval()
|
531 |
+
image_dict = {}
|
532 |
+
audio_dict = {}
|
533 |
+
print("Evaluating ...")
|
534 |
+
with torch.no_grad():
|
535 |
+
for batch_idx, (
|
536 |
+
x,
|
537 |
+
x_lengths,
|
538 |
+
spec,
|
539 |
+
spec_lengths,
|
540 |
+
y,
|
541 |
+
y_lengths,
|
542 |
+
speakers,
|
543 |
+
tone,
|
544 |
+
language,
|
545 |
+
bert,
|
546 |
+
ja_bert,
|
547 |
+
) in enumerate(eval_loader):
|
548 |
+
x, x_lengths = x.cuda(), x_lengths.cuda()
|
549 |
+
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
550 |
+
y, y_lengths = y.cuda(), y_lengths.cuda()
|
551 |
+
speakers = speakers.cuda()
|
552 |
+
bert = bert.cuda()
|
553 |
+
ja_bert = ja_bert.cuda()
|
554 |
+
tone = tone.cuda()
|
555 |
+
language = language.cuda()
|
556 |
+
for use_sdp in [True, False]:
|
557 |
+
y_hat, attn, mask, *_ = generator.module.infer(
|
558 |
+
x,
|
559 |
+
x_lengths,
|
560 |
+
speakers,
|
561 |
+
tone,
|
562 |
+
language,
|
563 |
+
bert,
|
564 |
+
ja_bert,
|
565 |
+
y=spec,
|
566 |
+
max_len=1000,
|
567 |
+
sdp_ratio=0.0 if not use_sdp else 1.0,
|
568 |
+
)
|
569 |
+
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
570 |
+
|
571 |
+
mel = spec_to_mel_torch(
|
572 |
+
spec,
|
573 |
+
hps.data.filter_length,
|
574 |
+
hps.data.n_mel_channels,
|
575 |
+
hps.data.sampling_rate,
|
576 |
+
hps.data.mel_fmin,
|
577 |
+
hps.data.mel_fmax,
|
578 |
+
)
|
579 |
+
y_hat_mel = mel_spectrogram_torch(
|
580 |
+
y_hat.squeeze(1).float(),
|
581 |
+
hps.data.filter_length,
|
582 |
+
hps.data.n_mel_channels,
|
583 |
+
hps.data.sampling_rate,
|
584 |
+
hps.data.hop_length,
|
585 |
+
hps.data.win_length,
|
586 |
+
hps.data.mel_fmin,
|
587 |
+
hps.data.mel_fmax,
|
588 |
+
)
|
589 |
+
image_dict.update(
|
590 |
+
{
|
591 |
+
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
592 |
+
y_hat_mel[0].cpu().numpy()
|
593 |
+
)
|
594 |
+
}
|
595 |
+
)
|
596 |
+
audio_dict.update(
|
597 |
+
{
|
598 |
+
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
|
599 |
+
0, :, : y_hat_lengths[0]
|
600 |
+
]
|
601 |
+
}
|
602 |
+
)
|
603 |
+
image_dict.update(
|
604 |
+
{
|
605 |
+
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
606 |
+
mel[0].cpu().numpy()
|
607 |
+
)
|
608 |
+
}
|
609 |
+
)
|
610 |
+
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
611 |
+
|
612 |
+
utils.summarize(
|
613 |
+
writer=writer_eval,
|
614 |
+
global_step=global_step,
|
615 |
+
images=image_dict,
|
616 |
+
audios=audio_dict,
|
617 |
+
audio_sampling_rate=hps.data.sampling_rate,
|
618 |
+
)
|
619 |
+
generator.train()
|
620 |
+
|
621 |
+
|
622 |
+
if __name__ == "__main__":
|
623 |
+
run()
|