Spaces:
Running
on
L40S
Running
on
L40S
franciszzj
commited on
Commit
Β·
24e151d
1
Parent(s):
1eea134
update app.py
Browse files- app.py +130 -52
- utils/utils.py +31 -0
app.py
CHANGED
@@ -6,11 +6,12 @@ from leffa.model import LeffaModel
|
|
6 |
from leffa.inference import LeffaInference
|
7 |
from utils.garment_agnostic_mask_predictor import AutoMasker
|
8 |
from utils.densepose_predictor import DensePosePredictor
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
|
12 |
# Download checkpoints
|
13 |
-
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./")
|
14 |
|
15 |
|
16 |
def leffa_predict(src_image_path, ref_image_path, control_type):
|
@@ -18,6 +19,8 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
18 |
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
|
19 |
src_image = Image.open(src_image_path)
|
20 |
ref_image = Image.open(ref_image_path)
|
|
|
|
|
21 |
|
22 |
src_image_array = np.array(src_image)
|
23 |
ref_image_array = np.array(ref_image)
|
@@ -74,6 +77,14 @@ def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
74 |
return np.array(gen_image)
|
75 |
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
if __name__ == "__main__":
|
78 |
# import sys
|
79 |
|
@@ -82,56 +93,123 @@ if __name__ == "__main__":
|
|
82 |
# control_type = sys.argv[3]
|
83 |
# leffa_predict(src_image_path, ref_image_path, control_type)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
demo.launch(share=True, server_port=7860)
|
|
|
6 |
from leffa.inference import LeffaInference
|
7 |
from utils.garment_agnostic_mask_predictor import AutoMasker
|
8 |
from utils.densepose_predictor import DensePosePredictor
|
9 |
+
from utils.utils import resize_and_center
|
10 |
|
11 |
import gradio as gr
|
12 |
|
13 |
# Download checkpoints
|
14 |
+
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
|
15 |
|
16 |
|
17 |
def leffa_predict(src_image_path, ref_image_path, control_type):
|
|
|
19 |
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
|
20 |
src_image = Image.open(src_image_path)
|
21 |
ref_image = Image.open(ref_image_path)
|
22 |
+
src_image = resize_and_center(src_image, 768, 1024)
|
23 |
+
ref_image = resize_and_center(ref_image, 768, 1024)
|
24 |
|
25 |
src_image_array = np.array(src_image)
|
26 |
ref_image_array = np.array(ref_image)
|
|
|
77 |
return np.array(gen_image)
|
78 |
|
79 |
|
80 |
+
def leffa_predict_vt(src_image_path, ref_image_path):
|
81 |
+
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
|
82 |
+
|
83 |
+
|
84 |
+
def leffa_predict_pt(src_image_path, ref_image_path):
|
85 |
+
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
|
86 |
+
|
87 |
+
|
88 |
if __name__ == "__main__":
|
89 |
# import sys
|
90 |
|
|
|
93 |
# control_type = sys.argv[3]
|
94 |
# leffa_predict(src_image_path, ref_image_path, control_type)
|
95 |
|
96 |
+
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
|
97 |
+
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
|
98 |
+
|
99 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
|
100 |
+
gr.Markdown(title)
|
101 |
+
gr.Markdown(description)
|
102 |
+
|
103 |
+
with gr.Tab("Control Appearance (Virtual Try-on)"):
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column():
|
106 |
+
gr.Markdown("#### Person Image")
|
107 |
+
vt_src_image = gr.Image(
|
108 |
+
sources=["upload"],
|
109 |
+
type="filepath",
|
110 |
+
label="Person Image",
|
111 |
+
width=512,
|
112 |
+
height=512,
|
113 |
+
)
|
114 |
+
|
115 |
+
gr.Examples(
|
116 |
+
inputs=vt_src_image,
|
117 |
+
examples_per_page=5,
|
118 |
+
examples=["./ckpts/examples/person1/01320_00.jpg",
|
119 |
+
"./ckpts/examples/person1/01350_00.jpg",
|
120 |
+
"./ckpts/examples/person1/01365_00.jpg",
|
121 |
+
"./ckpts/examples/person1/01376_00.jpg",
|
122 |
+
"./ckpts/examples/person1/01416_00.jpg",],
|
123 |
+
)
|
124 |
+
|
125 |
+
with gr.Column():
|
126 |
+
gr.Markdown("#### Garment Image")
|
127 |
+
vt_ref_image = gr.Image(
|
128 |
+
sources=["upload"],
|
129 |
+
type="filepath",
|
130 |
+
label="Garment Image",
|
131 |
+
width=512,
|
132 |
+
height=512,
|
133 |
+
)
|
134 |
+
|
135 |
+
gr.Examples(
|
136 |
+
inputs=vt_ref_image,
|
137 |
+
examples_per_page=5,
|
138 |
+
examples=["./ckpts/examples/garment/01449_00.jpg",
|
139 |
+
"./ckpts/examples/garment/01486_00.jpg",
|
140 |
+
"./ckpts/examples/garment/01853_00.jpg",
|
141 |
+
"./ckpts/examples/garment/02070_00.jpg",
|
142 |
+
"./ckpts/examples/garment/03553_00.jpg",],
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Column():
|
146 |
+
gr.Markdown("#### Generated Image")
|
147 |
+
vt_gen_image = gr.Image(
|
148 |
+
label="Generated Image",
|
149 |
+
width=512,
|
150 |
+
height=512,
|
151 |
+
)
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
vt_gen_button = gr.Button("Generate")
|
155 |
+
|
156 |
+
vt_gen_button.click(fn=leffa_predict_vt, inputs=[
|
157 |
+
vt_src_image, vt_ref_image], outputs=[vt_gen_image])
|
158 |
+
|
159 |
+
with gr.Tab("Control Pose (Pose Transfer)"):
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
gr.Markdown("#### Person Image")
|
163 |
+
pt_ref_image = gr.Image(
|
164 |
+
sources=["upload"],
|
165 |
+
type="filepath",
|
166 |
+
label="Person Image",
|
167 |
+
width=512,
|
168 |
+
height=512,
|
169 |
+
)
|
170 |
+
|
171 |
+
gr.Examples(
|
172 |
+
inputs=vt_src_image,
|
173 |
+
examples_per_page=5,
|
174 |
+
examples=["./ckpts/examples/person1/01320_00.jpg",
|
175 |
+
"./ckpts/examples/person1/01350_00.jpg",
|
176 |
+
"./ckpts/examples/person1/01365_00.jpg",
|
177 |
+
"./ckpts/examples/person1/01376_00.jpg",
|
178 |
+
"./ckpts/examples/person1/01416_00.jpg",],
|
179 |
+
)
|
180 |
+
|
181 |
+
with gr.Column():
|
182 |
+
gr.Markdown("#### Target Pose Person Image")
|
183 |
+
pt_src_image = gr.Image(
|
184 |
+
sources=["upload"],
|
185 |
+
type="filepath",
|
186 |
+
label="Target Pose Person Image",
|
187 |
+
width=512,
|
188 |
+
height=512,
|
189 |
+
)
|
190 |
+
|
191 |
+
gr.Examples(
|
192 |
+
inputs=pt_src_image,
|
193 |
+
examples_per_page=5,
|
194 |
+
examples=["./ckpts/examples/person2/01850_00.jpg",
|
195 |
+
"./ckpts/examples/person2/01875_00.jpg",
|
196 |
+
"./ckpts/examples/person2/02532_00.jpg",
|
197 |
+
"./ckpts/examples/person2/02902_00.jpg",
|
198 |
+
"./ckpts/examples/person2/05346_00.jpg",],
|
199 |
+
)
|
200 |
+
|
201 |
+
with gr.Column():
|
202 |
+
gr.Markdown("#### Generated Image")
|
203 |
+
pt_gen_image = gr.Image(
|
204 |
+
label="Generated Image",
|
205 |
+
width=512,
|
206 |
+
height=512,
|
207 |
+
)
|
208 |
+
|
209 |
+
with gr.Row():
|
210 |
+
pose_transfer_gen_button = gr.Button("Generate")
|
211 |
+
|
212 |
+
pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[
|
213 |
+
pt_src_image, pt_ref_image], outputs=[pt_gen_image])
|
214 |
|
215 |
demo.launch(share=True, server_port=7860)
|
utils/utils.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
|
3 |
+
|
4 |
+
def resize_and_center(image, target_width, target_height, fill_color=(255, 255, 255)):
|
5 |
+
"""
|
6 |
+
Resize the image to fit within (target_width, target_height) while maintaining aspect ratio,
|
7 |
+
and center it with padding to match the exact target size.
|
8 |
+
|
9 |
+
Parameters:
|
10 |
+
- image: PIL.Image object
|
11 |
+
- target_width: Desired width of the final image
|
12 |
+
- target_height: Desired height of the final image
|
13 |
+
- fill_color: Background color used for padding
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
- A resized and centered PIL.Image object
|
17 |
+
"""
|
18 |
+
# Resize the image while maintaining the aspect ratio
|
19 |
+
image.thumbnail((target_width, target_height), Image.Resampling.LANCZOS)
|
20 |
+
|
21 |
+
# Create a new image with the desired size and fill color
|
22 |
+
new_image = Image.new("RGB", (target_width, target_height), fill_color)
|
23 |
+
|
24 |
+
# Calculate the position to center the resized image
|
25 |
+
x_offset = (target_width - image.width) // 2
|
26 |
+
y_offset = (target_height - image.height) // 2
|
27 |
+
|
28 |
+
# Paste the resized image onto the new image with padding
|
29 |
+
new_image.paste(image, (x_offset, y_offset))
|
30 |
+
|
31 |
+
return new_image
|