synthid-text / app.py
RyanMullins's picture
Fixing links
dc23d90
from collections.abc import Sequence
import random
from typing import Optional, List, Tuple
import gradio as gr
import spaces
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BayesianDetectorModel,
SynthIDTextWatermarkingConfig,
SynthIDTextWatermarkDetector,
SynthIDTextWatermarkLogitsProcessor,
)
# If the watewrmark is not detected, consider the use case. Could be because of
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
# be another
_MODEL_IDENTIFIER = 'google/gemma-2b-it'
_DETECTOR_IDENTIFIER = 'google/synthid-spaces-demo-detector'
_PROMPTS: Tuple[str] = (
'Write an essay about my pets, a cat named Mika and a dog named Cleo.',
'',
'',
)
_TORCH_DEVICE = (
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
_ANSWERS: List[Tuple[str, str]] = []
_WATERMARK_CONFIG_DICT = dict(
ngram_len=5,
keys=[
654,
400,
836,
123,
340,
443,
597,
160,
57,
29,
590,
639,
13,
715,
468,
990,
966,
226,
324,
585,
118,
504,
421,
521,
129,
669,
732,
225,
90,
960,
],
sampling_table_size=2**16,
sampling_table_seed=0,
context_history_size=1024,
)
_WATERMARK_CONFIG = SynthIDTextWatermarkingConfig(
**_WATERMARK_CONFIG_DICT
)
tokenizer = AutoTokenizer.from_pretrained(
_MODEL_IDENTIFIER, padding_side="left"
)
tokenizer.pad_token_id = tokenizer.eos_token_id
model = AutoModelForCausalLM.from_pretrained(_MODEL_IDENTIFIER)
model.to(_TORCH_DEVICE)
logits_processor = SynthIDTextWatermarkLogitsProcessor(
**_WATERMARK_CONFIG_DICT,
device=_TORCH_DEVICE,
)
detector_module = BayesianDetectorModel.from_pretrained(_DETECTOR_IDENTIFIER)
detector_module.to(_TORCH_DEVICE)
detector = SynthIDTextWatermarkDetector(
detector_module=detector_module,
logits_processor=logits_processor,
tokenizer=tokenizer,
)
@spaces.GPU
def generate_outputs(
prompts: Sequence[str],
watermarking_config: Optional[SynthIDTextWatermarkingConfig] = None,
) -> Tuple[Sequence[str], torch.Tensor]:
tokenized_prompts = tokenizer(
prompts, return_tensors='pt', padding="longest"
).to(_TORCH_DEVICE)
input_length = tokenized_prompts.input_ids.shape[1]
output_sequences = model.generate(
**tokenized_prompts,
watermarking_config=watermarking_config,
do_sample=True,
max_length=500,
top_k=40,
)
output_sequences = output_sequences[:, input_length:]
detections = detector(output_sequences)
return (
tokenizer.batch_decode(output_sequences, skip_special_tokens=True),
detections
)
with gr.Blocks() as demo:
gr.Markdown(
'''
# Using SynthID Text in your Generative AI projects
[SynthID][synthid] is a Google DeepMind technology that watermarks and
identifies AI-generated content by embedding digital watermarks directly
into AI-generated images, audio, text or video.
SynthID Text is an open source implementation of this technology available
in Hugging Face Transformers that has two major components:
* A [logits processor][synthid-hf-logits-processor] that is
[configured][synthid-hf-config] on a per-model basis and activated when
calling `.generate()`; and
* A [detector][synthid-hf-detector] trained to recognized watermarked text
generated by a specific model with a specific configuraiton.
This Space demonstrates:
1. How to use SynthID Text to apply a watermark to text generated by your
model; and
1. How to identify that text using a ready-made detector.
Note that this detector is trained specifically for this demonstration. You
should maintain a specific watermarking configuration for every model you
use and protect that configuration as you would any other secret. See the
[end-to-end guide][synthid-hf-detector-e2e] for more on training your own
detectors, and the [SynthID Text documentation][raitk-synthid] for more on
how this technology works.
## Applying a watermark
Practically speaking, SynthID Text is a logits processor, applied to your
model's generation pipeline after [Top-K and Top-P][cloud-parameter-values],
that augments the model's logits using a pseudorandom _g_-function to encode
watermarking information in a way that balances generation quality with
watermark detectability. See the [paper][synthid-nature] for a complete
technical description of the algorithm and analyses of how different
configuration values affect performance.
Watermarks are [configured][synthid-hf-config] to parameterize the
_g_-function and how it is applied during generation. The following
configuration is used for all demos. It should not be used for any
production purposes.
```json
{
"ngram_len": 5,
"keys": [
654, 400, 836, 123, 340, 443, 597, 160, 57, 29,
590, 639, 13, 715, 468, 990, 966, 226, 324, 585,
118, 504, 421, 521, 129, 669, 732, 225, 90, 960
],
"sampling_table_size": 65536,
"sampling_table_seed": 0,
"context_history_size": 1024
}
```
Watermarks are applied by initializing a `SynthIDTextWatermarkingConfig`
and passing that as the `watermarking_config=` parameter in your call to
`.generate()`, as shown in the snippet below.
```python
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
SynthIDTextWatermarkingConfig,
)
# Standard model and tokenizer initialization
tokenizer = AutoTokenizer.from_pretrained('repo/id')
model = AutoModelForCausalLM.from_pretrained('repo/id')
# SynthID Text configuration
watermarking_config = SynthIDTextWatermarkingConfig(...)
# Generation with watermarking
tokenized_prompts = tokenizer(["your prompts here"])
output_sequences = model.generate(
**tokenized_prompts,
watermarking_config=watermarking_config,
do_sample=True,
)
watermarked_text = tokenizer.batch_decode(output_sequences)
```
## Try it yourself.
Lets use [Gemma 2B IT][gemma] to help you understand how watermarking works.
Using the text boxes below enter up to three prompts then click the generate
button. An example is provided to help get you started, but the cells are
fully editable.
Gemma will then generate watermarked and non-watermarked responses for each
non-empty prompt you provided.
[cloud-parameter-values]: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/adjust-parameter-values
[gemma]: https://huggingface.co/google/gemma-2b
[raitk-synthid]: https://ai.google.dev/responsible/docs/safeguards/synthid
[synthid]: https://deepmind.google/technologies/synthid/
[synthid-hf-config]: https://huggingface.co/docs/transformers/v4.46.0/en/internal/generation_utils#transformers.SynthIDTextWatermarkingConfig
[synthid-hf-detector]: https://huggingface.co/docs/transformers/v4.46.0/en/internal/generation_utils#transformers.BayesianDetectorModel
[synthid-hf-detector-e2e]: https://github.com/huggingface/transformers/tree/v4.46.0/examples/research_projects/synthid_text/detector_training.py
[synthid-hf-logits-processor]: https://huggingface.co/docs/transformers/v4.46.0/en/internal/generation_utils#transformers.SynthIDTextWatermarkLogitsProcessor
[synthid-nature]: https://www.nature.com/articles/s41586-024-08025-4
'''
)
prompt_inputs = [
gr.Textbox(value=prompt, lines=4, label='Prompt')
for prompt in _PROMPTS
]
generate_btn = gr.Button('Generate')
with gr.Column(visible=False) as generations_col:
gr.Markdown(
'''
## Human recognition of watermarked text
The primary goal of SynthID Text is to apply a watermark to generated text
without affecting generation quality. Another way to think about this is
that generated text that carries a watermark should be imperceptible to
you, the reader, but easily perceived by a watermark detector.
The responses from Gemma are shown below. Use the checkboxes to mark which
responses you think are the watermarked, then click the "reveal" button to
see the true values.
The [research paper][synthid-nature] has an in-depth study examining human
perception of watermarked versus non-watermarked text.
[synthid-nature]: https://www.nature.com/articles/s41586-024-08025-4
'''
)
generations_grp = gr.CheckboxGroup(
label='All generations, in random order',
info='Select the generations you think are watermarked!',
)
reveal_btn = gr.Button('Reveal', visible=False)
with gr.Column(visible=False) as detections_col:
gr.Markdown(
'''
## Detecting watermarked text
The only way to properly detect watermarked text is with a trained
classifier. This Space uses a pre-trained classifier hosted on Hugging Face
Hub. For production uses you will need to train your own classifiers to
recognize your watermarks. A [Bayesian detector][synthid-hf-detector] is
provided in Transformers, along with an
[end-to-end example][synthid-hf-detector-e2e] of how to train one of these
detectors.
You can see how your guesses compared to the actual results below. As
above, the responses are displayed in checkboxes. If the box is checked,
then the text carries a watermark. Your correct guesses are annotated with
the "Correct" prefix.
[synthid-hf-detector]: https://huggingface.co/docs/transformers/v4.46.0/en/internal/generation_utils#transformers.BayesianDetectorModel
[synthid-hf-detector-e2e]: https://github.com/huggingface/transformers/tree/v4.46.0/examples/research_projects/synthid_text/detector_training.py
'''
)
revealed_grp = gr.CheckboxGroup(
label='Ground truth for all generations',
info=(
'Watermarked generations are checked, and your selection are '
'marked as correct or incorrect in the text.'
),
)
gr.Markdown(
'''
## Limitations
SynthID Text watermarks are robust to some transformations, such as
cropping pieces of text, modifying a few words, or mild paraphrasing, but
this method does have limitations.
- Watermark application is less effective on factual responses, as there
is less opportunity to augment generation without decreasing accuracy.
- Detector confidence scores can be greatly reduced when an AI-generated
text is thoroughly rewritten, or translated to another language.
SynthID Text is not built to directly stop motivated adversaries from
causing harm. However, it can make it harder to use AI-generated content
for malicious purposes, and it can be combined with other approaches to
give better coverage across content types and platforms.
'''
)
reset_btn = gr.Button('Reset', visible=False)
def generate(*prompts):
prompts = [p for p in prompts if p]
standard, standard_detector = generate_outputs(prompts=prompts)
watermarked, watermarked_detector = generate_outputs(
prompts=prompts,
watermarking_config=_WATERMARK_CONFIG,
)
upper_threshold = 0.9501
lower_threshold = 0.1209
def decision(score: float) -> str:
if score > upper_threshold:
return 'Watermarked'
elif lower_threshold < score < upper_threshold:
return 'Indeterminate'
else:
return 'Not watermarked'
responses = [
(text, decision(score))
for text, score in zip(standard, standard_detector[0])
]
responses += [
(text, decision(score))
for text, score in zip(watermarked, watermarked_detector[0])
]
random.shuffle(responses)
_ANSWERS.extend(responses)
# Load model
return {
generate_btn: gr.Button(visible=False),
generations_col: gr.Column(visible=True),
generations_grp: gr.CheckboxGroup(
[response[0] for response in responses],
),
reveal_btn: gr.Button(visible=True),
}
generate_btn.click(
lambda: gr.update(value='Generating...', interactive=False), None, generate_btn
).then(
generate,
inputs=prompt_inputs,
outputs=[generate_btn, generations_col, generations_grp, reveal_btn]
)
def reveal(user_selections: list[str]):
choices: list[str] = []
value: list[str] = []
for (response, decision) in _ANSWERS:
if decision == "Watermarked":
if response in user_selections:
choice = f'Correct! {response}'
else:
choice = response
value.append(choice)
else:
choice = response
choices.append(choice)
return {
reveal_btn: gr.Button(visible=False),
detections_col: gr.Column(visible=True),
revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
reset_btn: gr.Button(visible=True),
}
reveal_btn.click(
reveal,
inputs=generations_grp,
outputs=[
reveal_btn,
detections_col,
revealed_grp,
reset_btn
],
)
def reset():
_ANSWERS.clear()
return {
generations_col: gr.Column(visible=False),
detections_col: gr.Column(visible=False),
revealed_grp: gr.CheckboxGroup(visible=False),
reset_btn: gr.Button(visible=False),
generate_btn: gr.Button(value='Generate', interactive=True, visible=True),
}
reset_btn.click(
reset,
inputs=[],
outputs=[
generations_col,
detections_col,
revealed_grp,
reset_btn,
generate_btn,
],
)
if __name__ == '__main__':
demo.launch()