aliabd HF staff commited on
Commit
03a37e9
·
1 Parent(s): 12e02e0

Upload with huggingface_hub

Browse files
Files changed (5) hide show
  1. README.md +7 -8
  2. run.ipynb +1 -0
  3. run.py +46 -0
  4. screenshot.gif +0 -0
  5. screenshot.png +0 -0
README.md CHANGED
@@ -1,12 +1,11 @@
 
1
  ---
2
- title: Chatbot Dialogpt
3
- emoji: 📚
4
- colorFrom: green
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.20.1
8
- app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+
2
  ---
3
+ title: chatbot_dialogpt
4
+ emoji: 🔥
5
+ colorFrom: indigo
6
+ colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 3.21.0
9
+ app_file: run.py
10
  pinned: false
11
  ---
 
 
run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_dialogpt"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import AutoModelForCausalLM, AutoTokenizer\n", "import torch\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "model = AutoModelForCausalLM.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "\n", "def user(message, history):\n", " return \"\", history + [[message, None]]\n", "\n", "\n", "# bot_message = random.choice([\"Yes\", \"No\"])\n", "# history[-1][1] = bot_message\n", "# time.sleep(1)\n", "# return history\n", "\n", "# def predict(input, history=[]):\n", "# # tokenize the new input sentence\n", "\n", "def bot(history):\n", " user_message = history[-1][0]\n", " new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')\n", "\n", " # append the new user input tokens to the chat history\n", " bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)\n", "\n", " # generate a response \n", " history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()\n", "\n", " # convert the tokens to text, and then split the responses into lines\n", " response = tokenizer.decode(history[0]).split(\"<|endoftext|>\")\n", " response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list\n", " return history\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot()\n", " msg = gr.Textbox()\n", " clear = gr.Button(\"Clear\")\n", "\n", " msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(\n", " bot, chatbot, chatbot\n", " )\n", " clear.click(lambda: None, None, chatbot, queue=False)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
6
+ model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
7
+
8
+ def user(message, history):
9
+ return "", history + [[message, None]]
10
+
11
+
12
+ # bot_message = random.choice(["Yes", "No"])
13
+ # history[-1][1] = bot_message
14
+ # time.sleep(1)
15
+ # return history
16
+
17
+ # def predict(input, history=[]):
18
+ # # tokenize the new input sentence
19
+
20
+ def bot(history):
21
+ user_message = history[-1][0]
22
+ new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')
23
+
24
+ # append the new user input tokens to the chat history
25
+ bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
26
+
27
+ # generate a response
28
+ history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
29
+
30
+ # convert the tokens to text, and then split the responses into lines
31
+ response = tokenizer.decode(history[0]).split("<|endoftext|>")
32
+ response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
33
+ return history
34
+
35
+ with gr.Blocks() as demo:
36
+ chatbot = gr.Chatbot()
37
+ msg = gr.Textbox()
38
+ clear = gr.Button("Clear")
39
+
40
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
41
+ bot, chatbot, chatbot
42
+ )
43
+ clear.click(lambda: None, None, chatbot, queue=False)
44
+
45
+ if __name__ == "__main__":
46
+ demo.launch()
screenshot.gif ADDED
screenshot.png ADDED