Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
import torch | |
from diffusers import AudioLDM2Pipeline | |
import ast | |
import copy | |
import csv | |
import inspect | |
import os | |
import shutil | |
import subprocess | |
import tempfile | |
import warnings | |
from functools import partial | |
from pathlib import Path | |
from typing import TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional, Sequence | |
import numpy as np | |
import PIL | |
import PIL.Image | |
from gradio_client import utils as client_utils | |
from gradio_client.documentation import document | |
from gradio import components, oauth, processing_utils, routes, utils, wasm_utils | |
from gradio.context import Context, LocalContext, get_blocks_context | |
from gradio.data_classes import GradioModel, GradioRootModel | |
from gradio.events import Dependency, EventData | |
from gradio.exceptions import Error | |
from gradio.flagging import CSVLogger | |
from gradio.utils import UnhashableKeyDict | |
# make Space compatible with CPU duplicates | |
if torch.cuda.is_available(): | |
device = "cuda" | |
torch_dtype = torch.float16 | |
else: | |
device = "cpu" | |
torch_dtype = torch.float32 | |
# load the diffusers pipeline | |
repo_id = "cvssp/audioldm2" | |
pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) | |
# pipe.unet = torch.compile(pipe.unet) | |
# set the generator for reproducibility | |
generator = torch.Generator(device) | |
def make_waveform( | |
audio: str | tuple[int, np.ndarray], | |
*, | |
bg_color: str = "#f3f4f6", | |
bg_image: str | None = None, | |
fg_alpha: float = 0.75, | |
bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"), | |
bar_count: int = 50, | |
bar_width: float = 0.6, | |
animate: bool = False, | |
) -> str: | |
""" | |
Generates a waveform video from an audio file. Useful for creating an easy to share audio visualization. The output should be passed into a `gr.Video` component. | |
Parameters: | |
audio: Audio file path or tuple of (sample_rate, audio_data) | |
bg_color: Background color of waveform (ignored if bg_image is provided) | |
bg_image: Background image of waveform | |
fg_alpha: Opacity of foreground waveform | |
bars_color: Color of waveform bars. Can be a single color or a tuple of (start_color, end_color) of gradient | |
bar_count: Number of bars in waveform | |
bar_width: Width of bars in waveform. 1 represents full width, 0.5 represents half width, etc. | |
animate: If true, the audio waveform overlay will be animated, if false, it will be static. | |
Returns: | |
A filepath to the output video in mp4 format. | |
""" | |
import matplotlib.pyplot as plt | |
from matplotlib.animation import FuncAnimation | |
if isinstance(audio, str): | |
audio_file = audio | |
audio = processing_utils.audio_from_file(audio) | |
else: | |
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) | |
processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav") | |
audio_file = tmp_wav.name | |
if not os.path.isfile(audio_file): | |
raise ValueError("Audio file not found.") | |
ffmpeg = shutil.which("ffmpeg") | |
if not ffmpeg: | |
raise RuntimeError("ffmpeg not found.") | |
duration = round(len(audio[1]) / audio[0], 4) | |
# Helper methods to create waveform | |
def hex_to_rgb(hex_str): | |
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)] | |
def get_color_gradient(c1, c2, n): | |
if n < 1: | |
raise ValueError("Must have at least one stop in gradient") | |
c1_rgb = np.array(hex_to_rgb(c1)) / 255 | |
c2_rgb = np.array(hex_to_rgb(c2)) / 255 | |
mix_pcts = [x / (n - 1) for x in range(n)] | |
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts] | |
return [ | |
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item) | |
for item in rgb_colors | |
] | |
# Reshape audio to have a fixed number of bars | |
samples = audio[1] | |
if len(samples.shape) > 1: | |
samples = np.mean(samples, 1) | |
bins_to_pad = bar_count - (len(samples) % bar_count) | |
samples = np.pad(samples, [(0, bins_to_pad)]) | |
samples = np.reshape(samples, (bar_count, -1)) | |
samples = np.abs(samples) | |
samples = np.max(samples, 1) | |
with utils.MatplotlibBackendMananger(): | |
plt.clf() | |
# Plot waveform | |
color = ( | |
bars_color | |
if isinstance(bars_color, str) | |
else get_color_gradient(bars_color[0], bars_color[1], bar_count) | |
) | |
if animate: | |
fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False) | |
fig.subplots_adjust(left=0, bottom=0, right=1, top=1) | |
plt.axis("off") | |
plt.margins(x=0) | |
bar_alpha = fg_alpha if animate else 1.0 | |
barcollection = plt.bar( | |
np.arange(0, bar_count), | |
samples * 2, | |
bottom=(-1 * samples), | |
width=bar_width, | |
color=color, | |
alpha=bar_alpha, | |
) | |
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"} | |
if bg_image is not None: | |
savefig_kwargs["transparent"] = True | |
if animate: | |
savefig_kwargs["facecolor"] = "none" | |
else: | |
savefig_kwargs["facecolor"] = bg_color | |
plt.savefig(tmp_img.name, **savefig_kwargs) | |
if not animate: | |
waveform_img = PIL.Image.open(tmp_img.name) | |
waveform_img = waveform_img.resize((1000, 400)) | |
# Composite waveform with background image | |
if bg_image is not None: | |
waveform_array = np.array(waveform_img) | |
waveform_array[:, :, 3] = waveform_array[:, :, 3] * fg_alpha | |
waveform_img = PIL.Image.fromarray(waveform_array) | |
bg_img = PIL.Image.open(bg_image) | |
waveform_width, waveform_height = waveform_img.size | |
bg_width, bg_height = bg_img.size | |
if waveform_width != bg_width: | |
bg_img = bg_img.resize( | |
( | |
waveform_width, | |
2 * int(bg_height * waveform_width / bg_width / 2), | |
) | |
) | |
bg_width, bg_height = bg_img.size | |
composite_height = max(bg_height, waveform_height) | |
composite = PIL.Image.new( | |
"RGBA", (waveform_width, composite_height), "#FFFFFF" | |
) | |
composite.paste(bg_img, (0, composite_height - bg_height)) | |
composite.paste( | |
waveform_img, (0, composite_height - waveform_height), waveform_img | |
) | |
composite.save(tmp_img.name) | |
img_width, img_height = composite.size | |
else: | |
img_width, img_height = waveform_img.size | |
waveform_img.save(tmp_img.name) | |
else: | |
def _animate(_): | |
for idx, b in enumerate(barcollection): | |
rand_height = np.random.uniform(0.8, 1.2) | |
b.set_height(samples[idx] * rand_height * 2) | |
b.set_y((-rand_height * samples)[idx]) | |
frames = int(duration * 10) | |
anim = FuncAnimation( | |
fig, # type: ignore | |
_animate, # type: ignore | |
repeat=False, | |
blit=False, | |
frames=frames, | |
interval=100, | |
) | |
anim.save( | |
tmp_img.name, | |
writer="pillow", | |
fps=10, | |
codec="png", | |
savefig_kwargs=savefig_kwargs, | |
) | |
# Convert waveform to video with ffmpeg | |
output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
if animate and bg_image is not None: | |
ffmpeg_cmd = [ | |
ffmpeg, | |
"-loop", | |
"1", | |
"-i", | |
bg_image, | |
"-i", | |
tmp_img.name, | |
"-i", | |
audio_file, | |
"-filter_complex", | |
"[0:v]scale=w=trunc(iw/2)*2:h=trunc(ih/2)*2[bg];[1:v]format=rgba,colorchannelmixer=aa=1.0[ov];[bg][ov]overlay=(main_w-overlay_w*0.9)/2:main_h-overlay_h*0.9/2[output]", | |
"-t", | |
str(duration), | |
"-map", | |
"[output]", | |
"-map", | |
"2:a", | |
"-c:v", | |
"libx264", | |
"-c:a", | |
"aac", | |
"-shortest", | |
"-y", | |
output_mp4.name, | |
] | |
elif animate and bg_image is None: | |
ffmpeg_cmd = [ | |
ffmpeg, | |
"-i", | |
tmp_img.name, | |
"-i", | |
audio_file, | |
"-filter_complex", | |
"[0:v][1:a]concat=n=1:v=1:a=1[v];[v]scale=1000:400,format=yuv420p[v_scaled]", | |
"-map", | |
"[v_scaled]", | |
"-map", | |
"1:a", | |
"-c:v", | |
"libx264", | |
"-c:a", | |
"aac", | |
"-shortest", | |
"-y", | |
output_mp4.name, | |
] | |
else: | |
ffmpeg_cmd = [ | |
ffmpeg, | |
"-loop", | |
"1", | |
"-i", | |
tmp_img.name, | |
"-i", | |
audio_file, | |
"-vf", | |
f"color=c=#FFFFFF77:s={img_width}x{img_height}[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1", # type: ignore | |
"-t", | |
str(duration), | |
"-y", | |
output_mp4.name, | |
] | |
subprocess.check_call(ffmpeg_cmd) | |
return output_mp4.name | |
def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates): | |
if text is None: | |
raise gr.Error("Please provide a text input.") | |
waveforms = pipe( | |
text, | |
audio_length_in_s=duration, | |
guidance_scale=guidance_scale, | |
num_inference_steps=200, | |
negative_prompt=negative_prompt, | |
num_waveforms_per_prompt=n_candidates if n_candidates else 1, | |
generator=generator.manual_seed(int(random_seed)), | |
)["audios"] | |
return make_waveform((16000, waveforms[0]), bg_image="bg.png") | |
# return gr.Audio(sources=["microphone"], type="filepath") | |
iface = gr.Blocks() | |
with iface: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
AudioLDM 2: A General Framework for Audio, Music, and Speech Generation | |
</h1> | |
</div> <p style="margin-bottom: 10px; font-size: 94%"> | |
<a href="https://arxiv.org/abs/2308.05734">[Paper]</a> <a href="https://audioldm.github.io/audioldm2">[Project | |
page]</a> <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2">[🧨 | |
Diffusers]</a> | |
</p> | |
</div> | |
""" | |
) | |
gr.HTML("""This is the demo for AudioLDM 2, powered by 🧨 Diffusers. Demo uses the checkpoint <a | |
href="https://huggingface.co/cvssp/audioldm2"> AudioLDM 2 base</a>. For faster inference without waiting in | |
queue, you may duplicate the space and upgrade to a GPU in the settings.""") | |
gr.DuplicateButton() | |
with gr.Group(): | |
textbox = gr.Textbox( | |
value="The vibrant beat of Brazilian samba drums.", | |
max_lines=1, | |
label="Input text", | |
info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.", | |
elem_id="prompt-in", | |
) | |
negative_textbox = gr.Textbox( | |
value="Low quality.", | |
max_lines=1, | |
label="Negative prompt", | |
info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.", | |
elem_id="prompt-in", | |
) | |
with gr.Accordion("Click to modify detailed configurations", open=False): | |
seed = gr.Number( | |
value=45, | |
label="Seed", | |
info="Change this value (any integer number) will lead to a different generation result.", | |
) | |
duration = gr.Slider(5, 15, value=10, step=2.5, label="Duration (seconds)") | |
guidance_scale = gr.Slider( | |
0, | |
7, | |
value=3.5, | |
step=0.5, | |
label="Guidance scale", | |
info="Larger => better quality and relevancy to text; Smaller => better diversity", | |
) | |
n_candidates = gr.Slider( | |
1, | |
5, | |
value=3, | |
step=1, | |
label="Number waveforms to generate", | |
info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A larger value usually lead to better quality with heavier computation", | |
) | |
outputs = gr.Video(label="Output", elem_id="output-video") | |
btn = gr.Button("Submit") | |
btn.click( | |
text2audio, | |
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates], | |
# inputs=[textbox, negative_textbox, 10, guidance_scale, seed, n_candidates], | |
outputs=[outputs], | |
) | |
gr.HTML( | |
""" | |
<div class="footer" style="text-align: center"> | |
<p>Share your generations with the community by clicking the share icon at the top right the generated audio!</p> | |
<p>Follow the latest update of AudioLDM 2 on our<a href="https://audioldm.github.io/audioldm2" | |
style="text-decoration: underline;" target="_blank"> Github repo</a> </p> | |
<p>Model by <a | |
href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe | |
Liu</a>. Code and demo by 🤗 Hugging Face.</p> | |
</div> | |
""" | |
) | |
gr.Examples( | |
[ | |
["A hammer is hitting a wooden surface.", "Low quality.", 10, 3.5, 45, 3], | |
["A cat is meowing for attention.", "Low quality.", 10, 3.5, 45, 3], | |
["An excited crowd cheering at a sports game.", "Low quality.", 10, 3.5, 45, 3], | |
["Birds singing sweetly in a blooming garden.", "Low quality.", 10, 3.5, 45, 3], | |
["A modern synthesizer creating futuristic soundscapes.", "Low quality.", 10, 3.5, 45, 3], | |
["The vibrant beat of Brazilian samba drums.", "Low quality.", 10, 3.5, 45, 3], | |
], | |
fn=text2audio, | |
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates], | |
outputs=[outputs], | |
cache_examples=True, | |
) | |
gr.HTML( | |
""" | |
<div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated | |
Audio</p> | |
<p>1. Try using more adjectives to describe your sound. For example: "A man is speaking | |
clearly and slowly in a large room" is better than "A man is speaking".</p> | |
<p>2. Try using different random seeds, which can significantly affect the quality of the generated | |
output.</p> | |
<p>3. It's better to use general terms like 'man' or 'woman' instead of specific names for individuals or | |
abstract objects that humans may not be familiar with.</p> | |
<p>4. Using a negative prompt to not guide the diffusion process can improve the | |
audio quality significantly. Try using negative prompts like 'low quality'.</p> | |
</div> | |
""" | |
) | |
with gr.Accordion("Additional information", open=False): | |
gr.HTML( | |
""" | |
<div class="acknowledgments"> | |
<p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, | |
<a href="https://freesound.org/">Freesound</a> and <a | |
href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo | |
based on the <a | |
href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK | |
copyright exception</a> of data for academic research. | |
</p> | |
</div> | |
""" | |
) | |
iface.queue(max_size=20).launch() | |