Spaces:
Running
Running
modify od fashion
Browse files- data/dior_show/dior1.jpg +0 -0
- data/dior_show/dior2.jpg +0 -0
- data/dior_show/dior3.jpg +0 -0
- data/dior_show/dior4.jpg +0 -0
- images/fashion_ai.jpg +0 -0
- images/fashion_od.jpg +0 -0
- images/fashion_od2.png +0 -0
- pages/object_detection.py +79 -37
data/dior_show/dior1.jpg
ADDED
data/dior_show/dior2.jpg
ADDED
data/dior_show/dior3.jpg
ADDED
data/dior_show/dior4.jpg
ADDED
images/fashion_ai.jpg
ADDED
images/fashion_od.jpg
ADDED
images/fashion_od2.png
ADDED
pages/object_detection.py
CHANGED
@@ -4,14 +4,24 @@ import streamlit as st
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
-
import altair as alt
|
|
|
|
|
8 |
|
9 |
from PIL import Image
|
10 |
from transformers import YolosFeatureExtractor, YolosForObjectDetection
|
11 |
from torchvision.transforms import ToTensor, ToPILImage
|
|
|
|
|
12 |
|
13 |
st.set_page_config(layout="wide")
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def rgb_to_hex(rgb):
|
17 |
"""Converts an RGB tuple to an HTML-style Hex string."""
|
@@ -76,7 +86,7 @@ def plot_results(pil_img, prob, boxes):
|
|
76 |
|
77 |
plt.savefig("results_od.png",
|
78 |
bbox_inches ="tight")
|
79 |
-
|
80 |
st.image("results_od.png")
|
81 |
|
82 |
return colors_used
|
@@ -112,15 +122,23 @@ def visualize_probas(probas, threshold, colors):
|
|
112 |
top_label_df["colors"] = colors
|
113 |
top_label_df.sort_values(by=["proba"], ascending=False, inplace=True)
|
114 |
|
115 |
-
st.dataframe(top_label_df.drop(columns=["colors"]))
|
116 |
|
117 |
mode_func = lambda x: x.mode().iloc[0]
|
118 |
top_label_df_agg = top_label_df.groupby("label").agg({"proba":"mean", "colors":mode_func})
|
119 |
top_label_df_agg = top_label_df_agg.reset_index().sort_values(by=["proba"], ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
chart = alt.Chart(top_label_df_agg).mark_bar().encode(x="proba", y="label",
|
122 |
-
|
123 |
-
#st.altair_chart(chart)
|
124 |
|
125 |
|
126 |
|
@@ -156,34 +174,38 @@ st.markdown("""Common applications of Object Detection include:
|
|
156 |
st.markdown(" ")
|
157 |
st.divider()
|
158 |
|
159 |
-
st.markdown("
|
160 |
-
st.
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
163 |
|
164 |
-
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
#images_dior = [os.path.join("data/dior_show",url) for url in os.listdir("data/dior_show") if url != "results"]
|
167 |
-
#st.image(images_dior, width=250, caption=[file for file in os.listdir("data/dior_show") if file != "results"])
|
168 |
|
169 |
st.markdown(" ")
|
170 |
-
#st.markdown("##### Select an image")
|
171 |
|
172 |
|
173 |
############## SELECT AN IMAGE ###############
|
174 |
|
175 |
-
st.markdown("####
|
176 |
-
st.
|
177 |
-
|
178 |
|
179 |
image_ = None
|
180 |
select_image_box = st.radio(
|
181 |
-
"",
|
182 |
["Choose an existing image", "Load your own image"],
|
183 |
-
index=None, label_visibility="collapsed")
|
184 |
|
185 |
if select_image_box == "Choose an existing image":
|
186 |
-
fashion_images_path = r"data/
|
187 |
list_images = os.listdir(fashion_images_path)
|
188 |
image_ = st.selectbox("", list_images, label_visibility="collapsed")
|
189 |
|
@@ -198,6 +220,8 @@ elif select_image_box == "Load your own image":
|
|
198 |
|
199 |
st.warning("""**Note**: The model tends to perform better with images of people/clothing items facing forward.
|
200 |
Choose this type of image if you want optimal results.""")
|
|
|
|
|
201 |
|
202 |
if image_ is not None:
|
203 |
st.image(Image.open(image_), width=300)
|
@@ -216,7 +240,7 @@ cats = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jac
|
|
216 |
|
217 |
dict_cats = dict(zip(np.arange(len(cats)), cats))
|
218 |
|
219 |
-
st.markdown("####
|
220 |
|
221 |
# Select one or more elements to detect
|
222 |
container = st.container()
|
@@ -239,21 +263,31 @@ st.markdown(" ")
|
|
239 |
|
240 |
############## SELECT A THRESHOLD ###############
|
241 |
|
242 |
-
st.markdown("####
|
|
|
|
|
|
|
243 |
|
244 |
-
st.
|
245 |
-
The threshold helps you decide how confident you want your model to be with its predictions.
|
246 |
-
Elements that were identified with a lower probability than the given threshold will be ignored in the final results.""")
|
247 |
|
248 |
-
threshold = st.slider('**Select a threshold**', min_value=0.0, step=0.05, max_value=1.0, value=0.75, label_visibility="collapsed")
|
249 |
-
# min_value=0.000000, step=0.000001, max_value=0.0005, value=0.0000045, format="%f"
|
250 |
|
251 |
-
|
252 |
-
|
|
|
253 |
|
254 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
255 |
|
|
|
256 |
|
|
|
|
|
|
|
|
|
257 |
st.markdown(" ")
|
258 |
|
259 |
|
@@ -269,29 +303,37 @@ if run_model:
|
|
269 |
image = fix_channels(ToTensor()(image))
|
270 |
|
271 |
## LOAD OBJECT DETECTION MODEL
|
272 |
-
|
273 |
-
|
274 |
-
model =
|
|
|
|
|
275 |
|
276 |
# RUN MODEL ON IMAGE
|
277 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
278 |
outputs = model(**inputs)
|
279 |
probas, keep = return_probas(outputs, threshold)
|
280 |
|
|
|
|
|
281 |
# PLOT BOUNDING BOX AND BARS/PROBA
|
282 |
col1, col2 = st.columns(2)
|
283 |
with col1:
|
284 |
-
st.markdown("
|
285 |
bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
|
286 |
colors_used = plot_results(image, probas[keep], bboxes_scaled)
|
287 |
|
288 |
with col2:
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
-
st.info("Done")
|
292 |
|
293 |
else:
|
294 |
-
st.
|
295 |
|
296 |
|
297 |
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
+
#import altair as alt
|
8 |
+
import plotly.express as px
|
9 |
+
|
10 |
|
11 |
from PIL import Image
|
12 |
from transformers import YolosFeatureExtractor, YolosForObjectDetection
|
13 |
from torchvision.transforms import ToTensor, ToPILImage
|
14 |
+
#from utils import load_model_huggingface
|
15 |
+
|
16 |
|
17 |
st.set_page_config(layout="wide")
|
18 |
|
19 |
+
@st.cache_data(ttl=3600, show_spinner=False)
|
20 |
+
def load_model(feature_extractor_url, model_url):
|
21 |
+
feature_extractor_ = YolosFeatureExtractor.from_pretrained(feature_extractor_url)
|
22 |
+
model_ = YolosForObjectDetection.from_pretrained(model_url)
|
23 |
+
return feature_extractor_, model_
|
24 |
+
|
25 |
|
26 |
def rgb_to_hex(rgb):
|
27 |
"""Converts an RGB tuple to an HTML-style Hex string."""
|
|
|
86 |
|
87 |
plt.savefig("results_od.png",
|
88 |
bbox_inches ="tight")
|
89 |
+
plt.show()
|
90 |
st.image("results_od.png")
|
91 |
|
92 |
return colors_used
|
|
|
122 |
top_label_df["colors"] = colors
|
123 |
top_label_df.sort_values(by=["proba"], ascending=False, inplace=True)
|
124 |
|
125 |
+
#st.dataframe(top_label_df.drop(columns=["colors"]))
|
126 |
|
127 |
mode_func = lambda x: x.mode().iloc[0]
|
128 |
top_label_df_agg = top_label_df.groupby("label").agg({"proba":"mean", "colors":mode_func})
|
129 |
top_label_df_agg = top_label_df_agg.reset_index().sort_values(by=["proba"], ascending=False)
|
130 |
+
top_label_df_agg.columns = ["Item","Score","Colors"]
|
131 |
+
|
132 |
+
color_map = dict(zip(top_label_df_agg["Item"].to_list(),
|
133 |
+
top_label_df_agg["Colors"].to_list()))
|
134 |
+
|
135 |
+
fig = px.bar(top_label_df_agg, y='Item', x='Score',
|
136 |
+
color="Item", title="Probability scores")
|
137 |
+
st.plotly_chart(fig, use_container_width=True)
|
138 |
|
139 |
+
# chart = alt.Chart(top_label_df_agg).mark_bar().encode(x="proba", y="label",
|
140 |
+
# color=alt.Color('colors:N', scale=None)).interactive()
|
141 |
+
# st.altair_chart(chart)
|
142 |
|
143 |
|
144 |
|
|
|
174 |
st.markdown(" ")
|
175 |
st.divider()
|
176 |
|
177 |
+
st.markdown("## Fashion Object Detection 👗")
|
178 |
+
# st.info("""This use case showcases the application of **Object detection** to detect clothing items/features on images. <br>
|
179 |
+
# The images used were gathered from Dior's""")
|
180 |
+
st.info("""In this use case, we are going to identify and locate different articles of clothings, as well as finer details such as a collar or pocket using an object detection AI model.
|
181 |
+
The images used were taken from **Dior's 2020 Fall Women Fashion Show**.""")
|
182 |
+
|
183 |
+
st.markdown(" ")
|
184 |
|
185 |
+
images_dior = [os.path.join("data/dior_show",url) for url in os.listdir("data/dior_show") if url != "results"]
|
186 |
+
columns_img = st.columns(4)
|
187 |
+
for img, col in zip(images_dior,columns_img):
|
188 |
+
with col:
|
189 |
+
st.image(img)
|
190 |
|
|
|
|
|
191 |
|
192 |
st.markdown(" ")
|
|
|
193 |
|
194 |
|
195 |
############## SELECT AN IMAGE ###############
|
196 |
|
197 |
+
st.markdown("#### Select an image 🖼️")
|
198 |
+
#st.markdown("""**Select an image that you wish to run the Object Detection model on.**""")
|
199 |
+
|
200 |
|
201 |
image_ = None
|
202 |
select_image_box = st.radio(
|
203 |
+
"**Select the image you wish to run the model on**",
|
204 |
["Choose an existing image", "Load your own image"],
|
205 |
+
index=None,)# #label_visibility="collapsed")
|
206 |
|
207 |
if select_image_box == "Choose an existing image":
|
208 |
+
fashion_images_path = r"data/dior_show"
|
209 |
list_images = os.listdir(fashion_images_path)
|
210 |
image_ = st.selectbox("", list_images, label_visibility="collapsed")
|
211 |
|
|
|
220 |
|
221 |
st.warning("""**Note**: The model tends to perform better with images of people/clothing items facing forward.
|
222 |
Choose this type of image if you want optimal results.""")
|
223 |
+
st.warning("""**Note:** The model was trained to detect clothing items on a single person.
|
224 |
+
If your image contains more than one person, the model won't detect the items of the other persons.""")
|
225 |
|
226 |
if image_ is not None:
|
227 |
st.image(Image.open(image_), width=300)
|
|
|
240 |
|
241 |
dict_cats = dict(zip(np.arange(len(cats)), cats))
|
242 |
|
243 |
+
st.markdown("#### Choose the elements you want to detect 👉")
|
244 |
|
245 |
# Select one or more elements to detect
|
246 |
container = st.container()
|
|
|
263 |
|
264 |
############## SELECT A THRESHOLD ###############
|
265 |
|
266 |
+
st.markdown("#### Define a threshold for predictions 🔎")
|
267 |
+
st.markdown("""Object detection models assign to each element detected a **probability score**. <br>
|
268 |
+
This score represents the model's belief in the accuracy of its prediction for a specific object.
|
269 |
+
""", unsafe_allow_html=True)
|
270 |
|
271 |
+
st.warning("**Note:** Objects that are assigned a lower score than the chosen threshold will be ignored in the final results.")
|
|
|
|
|
272 |
|
|
|
|
|
273 |
|
274 |
+
_, col, _ = st.columns([0.2,0.6,0.2])
|
275 |
+
with col:
|
276 |
+
st.image("images/probability_od.png", caption="Example of object detection with probability scores")
|
277 |
|
278 |
+
st.markdown(" ")
|
279 |
+
|
280 |
+
st.markdown("**Select a threshold** ")
|
281 |
+
|
282 |
+
# st.warning("""**Note**: The threshold helps you decide how confident you want your model to be with its predictions.
|
283 |
+
# Elements that are identified with a lower probability than the given threshold will be ignored in the final results.""")
|
284 |
|
285 |
+
threshold = st.slider('**Select a threshold**', min_value=0.5, step=0.05, max_value=1.0, value=0.75, label_visibility="collapsed")
|
286 |
|
287 |
+
if threshold < 0.6:
|
288 |
+
st.error("""**Warning**: Selecting a low threshold (below 0.6) could lead the model to make errors and detect too many objects.""")
|
289 |
+
|
290 |
+
st.write("You've selected a threshold at", threshold)
|
291 |
st.markdown(" ")
|
292 |
|
293 |
|
|
|
303 |
image = fix_channels(ToTensor()(image))
|
304 |
|
305 |
## LOAD OBJECT DETECTION MODEL
|
306 |
+
FEATURE_EXTRACTOR_PATH = "hustvl/yolos-small"
|
307 |
+
MODEL_PATH = "valentinafeve/yolos-fashionpedia"
|
308 |
+
feature_extractor, model = load_model(FEATURE_EXTRACTOR_PATH, MODEL_PATH)
|
309 |
+
# feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small')
|
310 |
+
# model = YolosForObjectDetection.from_pretrained(MODEL)
|
311 |
|
312 |
# RUN MODEL ON IMAGE
|
313 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
314 |
outputs = model(**inputs)
|
315 |
probas, keep = return_probas(outputs, threshold)
|
316 |
|
317 |
+
st.markdown("#### See the results ☑️")
|
318 |
+
|
319 |
# PLOT BOUNDING BOX AND BARS/PROBA
|
320 |
col1, col2 = st.columns(2)
|
321 |
with col1:
|
322 |
+
#st.markdown("**Bounding box results**")
|
323 |
bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
|
324 |
colors_used = plot_results(image, probas[keep], bboxes_scaled)
|
325 |
|
326 |
with col2:
|
327 |
+
#st.markdown("**Probability scores**")
|
328 |
+
if not any(keep.tolist()):
|
329 |
+
st.error("""No objects were detected on the image.
|
330 |
+
Decrease your threshold or choose differents items to detect.""")
|
331 |
+
else:
|
332 |
+
visualize_probas(probas, threshold, colors_used)
|
333 |
|
|
|
334 |
|
335 |
else:
|
336 |
+
st.error("You must select an **image**, **elements to detect** and a **threshold** to run the model !")
|
337 |
|
338 |
|
339 |
|