laudavid commited on
Commit
aa667a1
·
1 Parent(s): 5c537bb

modify app version

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. data/image_classification/class_accuracies.pkl +3 -0
  2. data/image_classification/diagonal.npy +3 -0
  3. data/image_classification/diagonal.pkl +3 -0
  4. data/image_classification/images/image1.jpg +0 -0
  5. data/image_classification/images/image2.jpg +0 -0
  6. data/image_classification/images/image3.jpg +0 -0
  7. data/image_classification/images/image4.jpg +0 -0
  8. data/image_classification/images/image5.jpg +0 -0
  9. data/image_classification/images/image6.jpg +0 -0
  10. data/image_classification/images/image7.jpg +0 -0
  11. data/image_classification/images/image8.jpg +0 -0
  12. data/image_classification/images/image9.jpg +0 -0
  13. data/image_classification/results.pkl +3 -0
  14. data/pinterest/image1.jpg +0 -0
  15. data/pinterest/image2.jpg +0 -0
  16. data/pinterest/image3.jpg +0 -0
  17. data/pinterest/image4.jpg +0 -0
  18. data/topic-modeling/data-tm-view.pkl +3 -0
  19. data/topic-modeling/similarity_topic_df.pkl +3 -0
  20. data/topic-modeling/similarity_topic_scores.npy +3 -0
  21. data/topic-modeling/topic_info.pkl +3 -0
  22. data/topic-modeling/topics_top_words.json +1 -0
  23. images/ML_domains.png +0 -0
  24. images/ML_header.jpg +0 -0
  25. images/brain_tumor.jpg +0 -0
  26. images/cnn_example.png +0 -0
  27. images/customer-churn.webp +0 -0
  28. images/e-commerce.jpg +0 -0
  29. images/fashion_ai.jpg +0 -0
  30. images/fashion_od.jpg +0 -0
  31. images/meningioma_tumor.png +0 -0
  32. images/no_tumor.png +0 -0
  33. images/od_header.jpg +0 -0
  34. images/pituitary.png +0 -0
  35. images/reviews.jpg +0 -0
  36. images/reviews.png +0 -0
  37. images/topic_modeling.gif +0 -0
  38. images/tumor_image.jpg +0 -0
  39. images/tumor_types_class.png +0 -0
  40. images/tumors_types_class.png +0 -0
  41. images/unsupervised_learner.webp +0 -0
  42. main_page.py +71 -20
  43. notebooks/Supervised-Unsupervised/supply_chain.ipynb +0 -55
  44. notebooks/energy_consumption.ipynb +11 -2
  45. notebooks/topic_modeling.ipynb +101 -0
  46. pages/image_classification.py +330 -0
  47. pages/object_detection.py +44 -18
  48. pages/recommendation_system.py +11 -5
  49. pages/sentiment_analysis.py +8 -5
  50. pages/supervised_unsupervised_page.py +13 -10
data/image_classification/class_accuracies.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b404d7c242ec04dea8a73b950670aee544791c4eafe19376888d0c21b78ecf6d
3
+ size 206
data/image_classification/diagonal.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:092072623a33151cd67b60123fd4e5f8e81d464e772721c17e4fbf307e800be5
3
+ size 152
data/image_classification/diagonal.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58b090912ec24da229e09882bfd7b13deef11eb1431b92ac0e9b4f2fab697a25
3
+ size 171
data/image_classification/images/image1.jpg ADDED
data/image_classification/images/image2.jpg ADDED
data/image_classification/images/image3.jpg ADDED
data/image_classification/images/image4.jpg ADDED
data/image_classification/images/image5.jpg ADDED
data/image_classification/images/image6.jpg ADDED
data/image_classification/images/image7.jpg ADDED
data/image_classification/images/image8.jpg ADDED
data/image_classification/images/image9.jpg ADDED
data/image_classification/results.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0147d470ee6854e29a4d66577e820a3d76910c659c6c19ba09996d165385f2fb
3
+ size 796
data/pinterest/image1.jpg DELETED
Binary file (82.5 kB)
 
data/pinterest/image2.jpg DELETED
Binary file (84.4 kB)
 
data/pinterest/image3.jpg DELETED
Binary file (113 kB)
 
data/pinterest/image4.jpg DELETED
Binary file (13.9 kB)
 
data/topic-modeling/data-tm-view.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcdfe682dc519405f991deb929d2e7bd197711ebd39d366204dc31540088bfe7
3
+ size 25643
data/topic-modeling/similarity_topic_df.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56ffc20bf88f4794175504142c145f009c30882cc8f9a4a2bd6685565d7b1031
3
+ size 5702
data/topic-modeling/similarity_topic_scores.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0eae3be2576e7314e8972be092e5c983857b8630f72452656d5511161925ee0
3
+ size 1848
data/topic-modeling/topic_info.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6641f3d3292ddf67301be1695a86d32dc1b4e50ce8300998a8f5ff4378006de
3
+ size 67773
data/topic-modeling/topics_top_words.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"Footwear": [["shoes", 0.38847787705376907], ["footwear", 0.35415016786395725], ["sole", 0.31010186887426383], ["heel", 0.3088388496929392], ["sandals", 0.3080144185111931]], "Stationery": [["poster", 0.4772449173738855], ["posters", 0.3532032467764592], ["paper", 0.33680800783349146], ["sticker", 0.32875394429105165], ["wall", 0.3267100065240568]], "Accessories": [["bag", 0.44865215755276705], ["bags", 0.34066237491127976], ["backpack", 0.32761906839012567], ["wallet", 0.3183404784655875], ["pouch", 0.3139648334711031]], "Casual Clothing": [["shirt", 0.4866213634648433], ["tshirt", 0.4388525801491516], ["cotton", 0.42030363825064176], ["hoodie", 0.3472116721637178], ["sweatshirt", 0.3252484971808718]], "Home Decor": [["bed", 0.3915837064596754], ["bedsheet", 0.3795293850199473], ["pillow", 0.3726331517956856], ["chair", 0.3620157706059908], ["cushion", 0.3371702503148896]], "Ethnic Wear": [["kurta", 0.5964118488674663], ["kurti", 0.46409279828742933], ["ethnic", 0.4271965752882015], ["lehenga", 0.35217693955328105], ["rayon", 0.32973478637750253]], "Kitchenware": [["food", 0.4053179773769792], ["baking", 0.36953324326216985], ["cooking", 0.33478563148016793], ["container", 0.33388107407524753], ["stainless", 0.328391980553913]], "Electronics": [["usb", 0.4370380638338913], ["remote", 0.3927290047743422], ["cable", 0.38592683873622896], ["battery", 0.37858979023970196], ["power", 0.35648534880129973]], "Mobile Accessories": [["multy", 0.8227986161311175], ["smartphone", 0.7174978731856773], ["sturdy", 0.614121692169791], ["designer", 0.6109682869843849], ["attractive", 0.6104716588340674]], "Toys and Games": [["toy", 0.49860348911927627], ["toys", 0.3988778432684865], ["kids", 0.3573877985545804], ["play", 0.32559893534296275], ["doll", 0.32138639583229955]], "Smartphone Cases": [["galaxy", 0.3735023765469636], ["samsung", 0.36692840942262006], ["tpu", 0.360454345644459], ["phone", 0.34470171090642315], ["case", 0.3323669244458833]], "Bathroom Essentials": [["towel", 0.47783909527995144], ["towels", 0.4756431172582276], ["bathroom", 0.45437940527046383], ["machine", 0.40002718019217415], ["washing", 0.39952622128733417]], "Fitness Apparel": [["shorts", 0.4030437177905839], ["yoga", 0.3508045282032731], ["fitness", 0.345809251125565], ["gym", 0.3372047840909218], ["exercise", 0.3255797401202898]], "Jewelry": [["beads", 0.5537295987387991], ["jewelry", 0.4715332431907011], ["necklace", 0.42530621186050926], ["sterling", 0.3859332057581718], ["jewellery", 0.37480366224575584]], "Tailoring": [["bust", 0.8067574906731596], ["length", 0.7507572954203788], ["hip", 0.7208533754339365], ["cuff", 0.6493257298350807], ["waist", 0.5680918306873547]], "Beauty Products": [["hair", 0.5233417349688945], ["skin", 0.49711579981104936], ["makeup", 0.4464886130813637], ["oil", 0.3695888525844108], ["powder", 0.33759452075830465]], "Automotive Parts": [["brake", 0.7679029085894177], ["ford", 0.538136002342594], ["caliper", 0.5149383886065275], ["rotors", 0.44156507901608216], ["remanufactured", 0.40996825453754265]], "Religious Items": [["pooja", 0.4592149148466313], ["puja", 0.440364978878493], ["ganesha", 0.4339401038570326], ["statue", 0.42572057559436643], ["lord", 0.4160582548834375]], "Rugs and Carpets": [["carpet", 0.7396822233119122], ["carpets", 0.6163891407029106], ["rug", 0.5466610489961798], ["pile", 0.4811751923719153], ["bedroomhall", 0.4774631207324265]], "Lighting": [["lamp", 0.572806507321936], ["lights", 0.5194199268441229], ["led", 0.4637118662205354], ["light", 0.42752197570640416], ["fog", 0.39030233935073244]], "Tools and Hardware": [["drill", 0.4090803554942639], ["wrench", 0.3887384996728029], ["brass", 0.37763561450770244], ["ratchet", 0.3576598563561437], ["welding", 0.34836291774213735]], "Gifts": [["gift", 0.49486738196492014], ["christmas", 0.4499909703416835], ["anniversary", 0.44211510176760416], ["birthday", 0.42329962363537077], ["holiday", 0.3769232700978505]], "Cups and Mugs": [["mug", 0.78550527496083], ["mugs", 0.6407372094776862], ["coffee", 0.5251853727580017], ["ceramic", 0.49068900003067073], ["microwave", 0.45930169018934874]], "Car Accessories": [["car", 0.5608807013030145], ["mats", 0.40243127224340647], ["vehicle", 0.32527312147968], ["mud", 0.3120217917532408], ["floor", 0.28639120838100274]], "Bicycles and Motorcycles": [["bike", 0.672669310609492], ["motorcycle", 0.45862702253497417], ["bicycle", 0.41604743198493005], ["wheeler", 0.4111806808042964], ["bikes", 0.40182534484285193]], "Eyewear": [["lens", 0.6347206656220337], ["sunglasses", 0.5827648990585392], ["lenses", 0.48591645135463507], ["glasses", 0.44000442658697553], ["vision", 0.35746121468648506]], "Gardening": [["plant", 0.5003258672377139], ["plants", 0.48132127991787405], ["flowers", 0.4775975182063175], ["pot", 0.45391275371608636], ["planter", 0.4432884490358204]], "Dining": [["table", 0.6153329443740811], ["dining", 0.37217834623751783], ["cutlery", 0.3139821236350345], ["tray", 0.3097030379964209], ["tablecloths", 0.3006277593090895]], "Lingerie": [["bra", 0.8965852601121921], ["cups", 0.5285363570485941], ["breast", 0.46345090588793064], ["nonpadded", 0.4551225849177485], ["straps", 0.4371461075717605]], "Apple Products": [["iphone", 0.7503862987601692], ["pro", 0.37695667339429706], ["apple", 0.37312380912718573], ["xr", 0.3582173040481931], ["max", 0.3526350702674551]], "Screen Protectors": [["screen", 0.6153666239172285], ["protector", 0.5651942935308064], ["protectors", 0.507626361439129], ["tempered", 0.4671540612427298], ["hardness", 0.4561645454021592]], "Women's Tops": [["sleeve", 0.49572716077806755], ["womens", 0.44013142956242973], ["sweatyrocks", 0.4203211398934657], ["crop", 0.41809175044803937], ["sleeveless", 0.41643008352599814]], "Gardening Supplies": [["hose", 0.7841372177474352], ["pipe", 0.6327301802335703], ["hoses", 0.5641588317324012], ["filter", 0.5118209249698248], ["fittings", 0.46796012979048174]], "Pet Supplies": [["dog", 0.6822708088198687], ["pet", 0.6400522687470505], ["dogs", 0.5160745818307858], ["collar", 0.42754412295633315], ["cats", 0.3647447770159879]], "Audio Equipment": [["sound", 0.7436954698780431], ["stereo", 0.6847399263959048], ["music", 0.6510439565263184], ["bluetooth", 0.6468335306088341], ["audio", 0.5323419441521797]], "Curtains": [["curtains", 0.7082112219740755], ["lxcm", 0.5903739907537208], ["curtain", 0.5406181796148612], ["sheer", 0.4277598568424003], ["panels", 0.419958307310006]], "Sarees": [["saree", 0.8783232110965399], ["sarees", 0.7321717143814415], ["sari", 0.5601859768503931], ["elegantly", 0.548955977226906], ["explore", 0.5321879512070764]], "Health and Wellness": [["coconut", 0.49630270118056097], ["dietary", 0.4819055711752624], ["ayurvedic", 0.46826858968976937], ["snack", 0.4369980524170574], ["supplement", 0.4248983967068878]], "Sportswear": [["hat", 0.7236122381999898], ["team", 0.5961027784061247], ["cap", 0.5198077659688286], ["jersey", 0.4724677801851194], ["nfl", 0.46235035258007345]], "Clocks and Alarms": [["clock", 0.9911350148825689], ["clocks", 0.5806141697627104], ["alarm", 0.4921721915993405], ["aa", 0.4199955227337318], ["wall", 0.41135071771777504]], "Watches": [["watch", 0.9877005762493802], ["watches", 0.6588330987551935], ["analogue", 0.6120074604752818], ["dial", 0.5425729098662936], ["band", 0.5008365915519408]], "Bar Accessories": [["wine", 0.7080736210501507], ["glasses", 0.6170645321866487], ["beer", 0.52017140239074], ["bottle", 0.5089754002398992], ["opener", 0.4765574582140716]], "Crafting Supplies": [["knitting", 0.7625115695769519], ["yarn", 0.624084654214461], ["needles", 0.6192608627071066], ["sewing", 0.5291732442509863], ["thread", 0.5207899838586767]]}
images/ML_domains.png ADDED
images/ML_header.jpg ADDED
images/brain_tumor.jpg ADDED
images/cnn_example.png ADDED
images/customer-churn.webp DELETED
Binary file (22.5 kB)
 
images/e-commerce.jpg ADDED
images/fashion_ai.jpg DELETED
Binary file (128 kB)
 
images/fashion_od.jpg DELETED
Binary file (101 kB)
 
images/meningioma_tumor.png ADDED
images/no_tumor.png ADDED
images/od_header.jpg ADDED
images/pituitary.png ADDED
images/reviews.jpg DELETED
Binary file (41.4 kB)
 
images/reviews.png ADDED
images/topic_modeling.gif ADDED
images/tumor_image.jpg ADDED
images/tumor_types_class.png ADDED
images/tumors_types_class.png ADDED
images/unsupervised_learner.webp DELETED
Binary file (227 kB)
 
main_page.py CHANGED
@@ -3,7 +3,7 @@ import streamlit as st
3
  import pandas as pd
4
  import numpy as np
5
 
6
- from st_pages import Page, show_pages
7
  from PIL import Image
8
  #from utils import authenticate_drive
9
 
@@ -14,6 +14,7 @@ from PIL import Image
14
  ##################################################################################
15
 
16
  st.set_page_config(layout="wide")
 
17
 
18
 
19
 
@@ -34,27 +35,41 @@ st.set_page_config(layout="wide")
34
  # TITLE #
35
  ##################################################################################
36
 
 
37
  st.image("images/AI.jpg")
38
- st.title("AI and Data Science Examples")
39
- st.subheader("HEC Paris, 2023-2024")
40
- st.markdown("""**Course provided by Shirish C. SRIVASTAVA** <br>
41
- and developped by Hi! PARIS Engineers: *Laurène DAVID*, *Salma HOUIDI* and *Maeva N'GUESSAN*.
42
- """, unsafe_allow_html=True)
 
 
 
 
43
  #st.markdown("in collaboration with Hi! PARIS engineers: Laurène DAVID, Salma HOUIDI and Maeva N'GUESSAN")
44
 
45
- st.markdown(" ")
46
- st.info("""**About the app**: The AI and Data Science Examples app was created to introduce students to the field of Data Science by showcasing real-life applications of AI.
47
- It includes use cases using traditional Machine Learning algorithms on structured data, as well as Deep Learning models run on unstructured data (text, images,...).""")
 
 
 
 
 
 
 
 
48
 
 
49
  st.divider()
50
 
51
 
52
- #Hi! PARIS collaboration mention
53
- st.markdown(" ")
54
- image_hiparis = Image.open('images/hi-paris.png')
55
- st.image(image_hiparis, width=150)
56
- url = "https://www.hi-paris.fr/"
57
- st.markdown("**The app was made in collaboration with [Hi! PARIS](%s)**" % url)
58
 
59
 
60
 
@@ -68,11 +83,21 @@ st.markdown("**The app was made in collaboration with [Hi! PARIS](%s)**" % url)
68
  show_pages(
69
  [
70
  Page("main_page.py", "Home Page", "🏠"),
71
- Page("pages/supervised_unsupervised_page.py", "Supervised vs Unsupervised", "🔍"),
72
- Page("pages/timeseries_analysis.py", "Time Series Forecasting", "📈"),
73
- Page("pages/sentiment_analysis.py", "Sentiment Analysis", "👍"),
74
- Page("pages/object_detection.py", "Object Detection", "📹"),
75
- Page("pages/recommendation_system.py", "Recommendation system", "🛒")
 
 
 
 
 
 
 
 
 
 
76
  ]
77
  )
78
 
@@ -83,4 +108,30 @@ show_pages(
83
  ##################################################################################
84
 
85
 
 
 
 
 
 
 
 
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import pandas as pd
4
  import numpy as np
5
 
6
+ from st_pages import Page, show_pages, Section, add_indentation
7
  from PIL import Image
8
  #from utils import authenticate_drive
9
 
 
14
  ##################################################################################
15
 
16
  st.set_page_config(layout="wide")
17
+ #add_indentation()
18
 
19
 
20
 
 
35
  # TITLE #
36
  ##################################################################################
37
 
38
+
39
  st.image("images/AI.jpg")
40
+ st.markdown(" ")
41
+
42
+ col1, col2 = st.columns([0.65,0.35], gap="medium")
43
+
44
+ with col1:
45
+ st.title("AI and Data Science Examples")
46
+ st.subheader("HEC Paris, 2023-2024")
47
+ st.markdown("""**Course provided by Shirish C. SRIVASTAVA** <br>
48
+ **Hi! PARIS Engineers**: Laurène DAVID, Salma HOUIDI and Maeva N'GUESSAN""", unsafe_allow_html=True)
49
  #st.markdown("in collaboration with Hi! PARIS engineers: Laurène DAVID, Salma HOUIDI and Maeva N'GUESSAN")
50
 
51
+ with col2:
52
+ #Hi! PARIS collaboration mention
53
+ st.markdown(" ")
54
+ st.markdown(" ")
55
+ st.markdown(" ")
56
+ image_hiparis = Image.open('images/hi-paris.png')
57
+ st.image(image_hiparis, width=150)
58
+
59
+ url = "https://www.hi-paris.fr/"
60
+ st.markdown("""###### **Made in collaboration with [Hi! PARIS](%s)** """ % url, unsafe_allow_html=True)
61
+
62
 
63
+ st.markdown(" ")
64
  st.divider()
65
 
66
 
67
+ # #Hi! PARIS collaboration mention
68
+ # st.markdown(" ")
69
+ # image_hiparis = Image.open('images/hi-paris.png')
70
+ # st.image(image_hiparis, width=150)
71
+ # url = "https://www.hi-paris.fr/"
72
+ # st.markdown("**The app was made in collaboration with [Hi! PARIS](%s)**" % url)
73
 
74
 
75
 
 
83
  show_pages(
84
  [
85
  Page("main_page.py", "Home Page", "🏠"),
86
+ Section(name=" ", icon=""),
87
+ Section(name=" ", icon=""),
88
+
89
+ Section(name="Machine Learning", icon="1️⃣"),
90
+ Page("pages/supervised_unsupervised_page.py", "1| Supervised vs Unsupervised 🔍", ""),
91
+ Page("pages/timeseries_analysis.py", "2| Time Series Forecasting 📈", ""),
92
+ Page("pages/recommendation_system.py", "3| Recommendation systems 🛒", ""),
93
+
94
+ Section(name="Natural Language Processing", icon="2️⃣"),
95
+ Page("pages/topic_modeling.py", "1| Topic Modeling 📚", ""),
96
+ Page("pages/sentiment_analysis.py", "2| Sentiment Analysis 👍", ""),
97
+
98
+ Section(name="Computer Vision", icon="3️⃣"),
99
+ Page("pages/image_classification.py", "1| Image Classification 🖼️", ""),
100
+ Page("pages/object_detection.py", "2| Object Detection 📹", "")
101
  ]
102
  )
103
 
 
108
  ##################################################################################
109
 
110
 
111
+ st.header("About the app")
112
+
113
+
114
+ st.info("""The **AI and Data Science Examples** app was created as a tool to introduce students to the field of Data Science by showcasing real-life applications of AI.
115
+ It includes use cases using traditional Machine Learning algorithms on structured data, as well as models that analyze unstructured data (text, images,...).""")
116
+
117
+ st.markdown(" ")
118
 
119
+ st.markdown("""The app is structured into three sections:
120
+ - 1️⃣ **Machine Learning**: This first section covers use cases where structured data (data in a tabular format) is fed to an AI model.
121
+ You will find pages on *Supervised/Unsupervised Learning*, *Time Series Forecasting* and AI powered *Recommendation Systems*.
122
+ - 2️�� **Natural Language Processing** (NLP): This second section showcases AI applications where large amounts of text data is analyzed using Deep Learning models.
123
+ Pages on *Topic Modeling* and *Sentiment Analysis*, which are types of NLP models, can be found in this section.
124
+ - 3️⃣ **Computer Vision**: This final section covers a sub-field of AI called Computer Vision which deals with image/video data.
125
+ The field of Computer Vision includes *Image classification* and *Object Detection*, which are both featured in this section.
126
+ """)
127
+
128
+ st.image("images/ML_domains.png",
129
+ caption="""This figure showcases a selection of sub-fields in Artificial Intelligence, such as traditional
130
+ Machine Learning, NLP, Computer Vision and Robotics.""")
131
+
132
+
133
+ # st.markdown(" ")
134
+ # st.markdown(" ")
135
+ # st.markdown("## Want to learn more about AI ?")
136
+ # st.markdown("""**Hi! PARIS**, a multidisciplinary center on Data Analysis and AI founded by Institut Polytechnique de Paris and HEC Paris,
137
+ # hosts every year a **Data Science Bootcamp** for students of all levels.""")
notebooks/Supervised-Unsupervised/supply_chain.ipynb DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 1,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "import os\n",
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt \n",
13
- "import seaborn as sns"
14
- ]
15
- },
16
- {
17
- "cell_type": "code",
18
- "execution_count": 2,
19
- "metadata": {},
20
- "outputs": [],
21
- "source": [
22
- "path_data = r\"C:\\Users\\LaurèneDAVID\\Documents\\Teaching\\Educational_apps\\app-hec-AI-DS\\data\\classification\\supply_chain_data.csv\"\n",
23
- "supply_data = pd.read_csv(path_data)"
24
- ]
25
- },
26
- {
27
- "cell_type": "code",
28
- "execution_count": null,
29
- "metadata": {},
30
- "outputs": [],
31
- "source": []
32
- }
33
- ],
34
- "metadata": {
35
- "kernelspec": {
36
- "display_name": "Python 3",
37
- "language": "python",
38
- "name": "python3"
39
- },
40
- "language_info": {
41
- "codemirror_mode": {
42
- "name": "ipython",
43
- "version": 3
44
- },
45
- "file_extension": ".py",
46
- "mimetype": "text/x-python",
47
- "name": "python",
48
- "nbconvert_exporter": "python",
49
- "pygments_lexer": "ipython3",
50
- "version": "3.9.0"
51
- }
52
- },
53
- "nbformat": 4,
54
- "nbformat_minor": 2
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
notebooks/energy_consumption.ipynb CHANGED
@@ -9,9 +9,18 @@
9
  },
10
  {
11
  "cell_type": "code",
12
- "execution_count": 6,
13
  "metadata": {},
14
- "outputs": [],
 
 
 
 
 
 
 
 
 
15
  "source": [
16
  "import pandas as pd \n",
17
  "import numpy as np\n",
 
9
  },
10
  {
11
  "cell_type": "code",
12
+ "execution_count": 1,
13
  "metadata": {},
14
+ "outputs": [
15
+ {
16
+ "name": "stderr",
17
+ "output_type": "stream",
18
+ "text": [
19
+ "c:\\Users\\LaurèneDAVID\\Documents\\Teaching\\Educational_apps\\app-ai-ds-hec\\venv\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
20
+ " from .autonotebook import tqdm as notebook_tqdm\n"
21
+ ]
22
+ }
23
+ ],
24
  "source": [
25
  "import pandas as pd \n",
26
  "import numpy as np\n",
notebooks/topic_modeling.ipynb ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Topic Modeling on product descriptions"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 2,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "#py -m pip install bertopic"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 1,
22
+ "metadata": {},
23
+ "outputs": [
24
+ {
25
+ "name": "stderr",
26
+ "output_type": "stream",
27
+ "text": [
28
+ "c:\\Users\\LaurèneDAVID\\Documents\\Teaching\\Educational_apps\\app-ai-ds-hec\\venv\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
29
+ " from .autonotebook import tqdm as notebook_tqdm\n"
30
+ ]
31
+ }
32
+ ],
33
+ "source": [
34
+ "import os\n",
35
+ "import pickle\n",
36
+ "import pandas as pd\n",
37
+ "from bertopic import BERTopic"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "code",
42
+ "execution_count": 2,
43
+ "metadata": {},
44
+ "outputs": [],
45
+ "source": [
46
+ "path_model = r\"C:\\Users\\LaurèneDAVID\\Documents\\Teaching\\Educational_apps\\data-hec-AI-DS\\model_topicmodeling.pkl\"\n",
47
+ "path_data = r\"C:\\Users\\LaurèneDAVID\\Documents\\Teaching\\Educational_apps\\data-hec-AI-DS\\data-topicmodeling.csv\""
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "execution_count": 3,
53
+ "metadata": {},
54
+ "outputs": [
55
+ {
56
+ "ename": "TypeError",
57
+ "evalue": "_rebuild() got an unexpected keyword argument 'impl_kind'",
58
+ "output_type": "error",
59
+ "traceback": [
60
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
61
+ "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
62
+ "Cell \u001b[1;32mIn[3], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mpickle\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mpath_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mrb\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
63
+ "File \u001b[1;32mc:\\Users\\LaurèneDAVID\\Documents\\Teaching\\Educational_apps\\app-ai-ds-hec\\venv\\lib\\site-packages\\numba\\core\\serialize.py:152\u001b[0m, in \u001b[0;36mcustom_rebuild\u001b[1;34m(custom_pickled)\u001b[0m\n\u001b[0;32m 147\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Customized object deserialization.\u001b[39;00m\n\u001b[0;32m 148\u001b[0m \n\u001b[0;32m 149\u001b[0m \u001b[38;5;124;03mThis function is referenced internally by `custom_reduce()`.\u001b[39;00m\n\u001b[0;32m 150\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28mcls\u001b[39m, states \u001b[38;5;241m=\u001b[39m custom_pickled\u001b[38;5;241m.\u001b[39mctor, custom_pickled\u001b[38;5;241m.\u001b[39mstates\n\u001b[1;32m--> 152\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m_rebuild(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mstates)\n",
64
+ "\u001b[1;31mTypeError\u001b[0m: _rebuild() got an unexpected keyword argument 'impl_kind'"
65
+ ]
66
+ }
67
+ ],
68
+ "source": [
69
+ "model = pickle.load(open(path_model, 'rb'))"
70
+ ]
71
+ },
72
+ {
73
+ "cell_type": "code",
74
+ "execution_count": null,
75
+ "metadata": {},
76
+ "outputs": [],
77
+ "source": []
78
+ }
79
+ ],
80
+ "metadata": {
81
+ "kernelspec": {
82
+ "display_name": "venv",
83
+ "language": "python",
84
+ "name": "python3"
85
+ },
86
+ "language_info": {
87
+ "codemirror_mode": {
88
+ "name": "ipython",
89
+ "version": 3
90
+ },
91
+ "file_extension": ".py",
92
+ "mimetype": "text/x-python",
93
+ "name": "python",
94
+ "nbconvert_exporter": "python",
95
+ "pygments_lexer": "ipython3",
96
+ "version": "3.9.0"
97
+ }
98
+ },
99
+ "nbformat": 4,
100
+ "nbformat_minor": 2
101
+ }
pages/image_classification.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pickle
3
+ import time
4
+ import os
5
+ import pandas as pd
6
+ import plotly.express as px
7
+ from PIL import Image
8
+ from utils import load_data_pickle
9
+
10
+
11
+ # import gradcam
12
+ # from gradcam.utils import visualize_cam
13
+ # from gradcam import GradCAM, GradCAMpp
14
+
15
+ #add_indentation()
16
+ st.set_page_config(layout="wide")
17
+
18
+ # Chemin vers le dossier contenant les images et le modèle pré-entraîné
19
+ DATA_DIR = r"data/image_classification/images"
20
+ MODEL_PATH = r"pretrained_models/image_classification/resnet18_braintumor.pt"
21
+ gradcam_images_paths = ["images/meningioma_tumor.png", "images/no_tumor.png", "images/pituitary.png"]
22
+
23
+ # PREPROCESSING
24
+
25
+ # def preprocess(image):
26
+ # # Il faut que l'image' est une image PIL. Si 'image' est un tableau numpy, on le convertit en image PIL.
27
+ # if isinstance(image, np.ndarray):
28
+ # image = Image.fromarray(image)
29
+
30
+ # transform = transforms.Compose([
31
+ # transforms.Resize((224, 224)),
32
+ # transforms.ToTensor(),
33
+ # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalisez l'image.
34
+ # ])
35
+ # # On applique les transformations définies sur l'image.
36
+ # image = transform(image)
37
+ # return image
38
+
39
+
40
+ # Chargement du modèle pré-entraîné
41
+
42
+ # def load_pretrained_model(num_classes=3):
43
+ # model = models.resnet18(pretrained=False)
44
+ # num_ftrs = model.fc.in_features
45
+ # model.fc = torch.nn.Linear(num_ftrs, num_classes)
46
+
47
+ # # Chargement des poids pré-entraînés tout en ignorant la dernière couche 'fc'
48
+ # state_dict = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
49
+ # state_dict.pop('fc.weight', None)
50
+ # state_dict.pop('fc.bias', None)
51
+ # model.load_state_dict(state_dict, strict=False)
52
+
53
+ # model.eval()
54
+ # return model
55
+
56
+ # model = load_pretrained_model(num_classes=3) #On a supprimés une des classes
57
+
58
+
59
+ # # PREDICTION
60
+ # def predict(image_preprocessed, model):
61
+ # # Si image_preprocessed est déjà un tensor PyTorch, on doit s'assurer qu'il soit de dimension 3 : [batch_size, channels, height, width]
62
+ # # La fonction unsqueeze(0) ajoute une dimension de batch_size au début pour le faire correspondre à cette attente
63
+ # if image_preprocessed.dim() == 3:
64
+ # image_preprocessed = image_preprocessed.unsqueeze(0)
65
+
66
+ # with torch.no_grad():
67
+ # output = model(image_preprocessed)
68
+ # _, predicted = torch.max(output, 1)
69
+ # return predicted, output
70
+
71
+
72
+
73
+ ###################################### TITLE ####################################
74
+
75
+ st.markdown("# Image Classification 🖼️")
76
+
77
+ st.markdown("### What is Image classification ?")
78
+ st.info("""**Image classification** is a process in Machine Learning and Computer Vision where an algorithm is trained to recognize and categorize images into predefined classes. It involves analyzing the visual content of an image and assigning it to a specific label based on its features.""")
79
+ #unsafe_allow_html=True)
80
+ st.markdown(" ")
81
+ st.markdown("""State-of-the-art image classification models use **neural networks** to predict whether an image belongs to a specific class.<br>
82
+ Each of the possible predicted classes are given a probability then the class with the highest value is assigned to the input image.""",
83
+ unsafe_allow_html=True)
84
+
85
+ image_ts = Image.open('images/cnn_example.png')
86
+ _, col, _ = st.columns([0.2,0.8,0.2])
87
+ with col:
88
+ st.image(image_ts,
89
+ caption="An example of an image classification model, with the 'backbone model' as the neural network.")
90
+
91
+ st.markdown(" ")
92
+
93
+ st.markdown("""Real-life applications of image classification includes:
94
+ - **Medical Imaging 👨‍⚕️**: Diagnose diseases and medical conditions from images such as X-rays, MRIs and CT scans to, for example, identify tumors and classify different types of cancers.
95
+ - **Autonomous Vehicules** 🏎️: Classify objects such as pedestrians, vehicles, traffic signs, lane markings, and obstacles, which is crucial for navigation and collision avoidance.
96
+ - **Satellite and Remote Sensing 🛰️**: Analyze satellite imagery to identify land use patterns, monitor vegetation health, assess environmental changes, and detect natural disasters such as wildfires and floods.
97
+ - **Quality Control 🛂**: Inspect products and identify defects to ensure compliance with quality standards during the manufacturying process.
98
+ """)
99
+
100
+ # st.markdown("""Real-life applications of Brain Tumor includes:
101
+ # - **Research and development💰**: The technologies and methodologies developed for brain tumor classification can advance research in neuroscience, oncology, and the development of new diagnostic tools and treatments.
102
+ # - **Healthcare👨‍⚕️**: Data derived from the classification and analysis of brain tumors can inform public health decisions, healthcare policies, and resource allocation, emphasizing areas with higher incidences of certain types of tumors.
103
+ # - **Insurance Industry 🏬**: Predict future demand for products to optimize inventory levels, reduce holding costs, and improve supply chain efficiency.
104
+ # """)
105
+
106
+
107
+ ###################################### USE CASE #######################################
108
+
109
+
110
+ # BEGINNING OF USE CASE
111
+ st.divider()
112
+ st.markdown("# Brain Tumor Classification 🧠")
113
+
114
+ st.info("""In this use case, a **brain tumor classification** model is leveraged to accurately identify the presence of tumors in MRI scans of the brain.
115
+ This application can be a great resource for healthcare professionals to facilite early detection and consequently improve treatment outcomes for patients.""")
116
+
117
+ st.markdown(" ")
118
+ _, col, _ = st.columns([0.1,0.8,0.1])
119
+ with col:
120
+ st.image("images/brain_tumor.jpg")
121
+
122
+ st.markdown(" ")
123
+ st.markdown(" ")
124
+
125
+ ### WHAT ARE BRAIN TUMORS ?
126
+ st.markdown(" ### What is a Brain Tumor ?")
127
+ st.markdown("""Before introducing the use case, let's give a short description on what a brain tumor is.
128
+ A brain tumor occurs when **abnormal cells form within the brain**. Two main types of tumors exist: **cancerous (malignant) tumors** and **benign tumors**.
129
+ - **Cancerous tumors** are malignant tumors that have the ability to invade nearby tissues and spread to other parts of the body through a process called metastasis.
130
+ - **Benign tumors** can become quite large but will not invade nearby tissue or spread to other parts of the body. They can still cause serious health problems depending on their size, location and rate of growth.
131
+ """, unsafe_allow_html=True)
132
+
133
+
134
+
135
+ st.markdown(" ")
136
+ st.markdown(" ")
137
+ st.markdown("### About the data 📋")
138
+
139
+ st.markdown("""You were provided with a large dataset which contains **anonymized patient MRI scans** categorized into three distinct classes: **pituitary tumor** (in most cases benign), **meningioma tumor** (cancerous) and **no tumor**.
140
+ This dataset will serve as the foundation for training our classification model, offering a comprehensive view of varied tumor presentations within the brain.""")
141
+
142
+ _, col, _ = st.columns([0.15,0.7,0.15])
143
+ with col:
144
+ st.image("images/tumors_types_class.png")
145
+
146
+ # see_data = st.checkbox('**See the data**', key="image_class\seedata")
147
+ # if see_data:
148
+ # st.warning("You can view here a few examples of the MRI training data.")
149
+ # # image selection
150
+ # images = os.listdir(DATA_DIR)
151
+ # selected_image1 = st.selectbox("Choose an image to visualize 🔎 :", images, key="selectionbox_key_2")
152
+
153
+ # # show image
154
+ # image_path = os.path.join(DATA_DIR, selected_image1)
155
+ # image = Image.open(image_path)
156
+ # st.image(image, caption="Image selected", width=450)
157
+
158
+ # st.info("""**Note**: This dataset will serve as the foundation for training our classification model, offering a comprehensive view of varied tumor presentations within the brain.
159
+ # By analyzing these images, the model learns to discern the subtle differences between each class, thereby enabling the precise identification of tumor types.""")
160
+
161
+ st.markdown(" ")
162
+ st.markdown(" ")
163
+
164
+
165
+
166
+ st.markdown("### Train the algorithm ⚙️")
167
+ st.markdown("""**Training an AI model** means feeding it data that contains multiple examples/images each type of tumor to be detected.
168
+ By analyzing the provided MRI images, the model learns to discern the subtle differences between each classes, thereby enabling the precise identification of tumor types.""")
169
+
170
+
171
+ ### CONDITION ##
172
+
173
+ # Initialisation de l'état du modèle
174
+ if 'model_train' not in st.session_state:
175
+ st.session_state['model_train'] = False
176
+
177
+ run_model = st.button("Train the model")
178
+
179
+ if run_model:
180
+ # Simuler l'entraînement du modèle
181
+ st.session_state.model_train = True
182
+ with st.spinner('Training the model...'):
183
+ time.sleep(2)
184
+ st.success("The model has been trained.")
185
+ else:
186
+ # Afficher le statut
187
+ st.info("The model hasn't been trained yet.")
188
+
189
+ # Afficher les résultats
190
+ if st.session_state.model_train:
191
+ st.markdown(" ")
192
+ st.markdown(" ")
193
+ st.markdown("### See the results ☑️")
194
+ tab1, tab2 = st.tabs(["Performance", "Explainability"])
195
+
196
+ with tab1:
197
+ #st.subheader("Performance")
198
+ st.info("""**Evaluating a model's performance** helps provide a quantitative measurement of it's ability to make accurate predictions.
199
+ In this use case, the performance of the brain tumor classification model was measured by comparing the patient's true diagnosis with the class predicted by the trained model.""")
200
+
201
+ class_accuracy_path = "data/image_classification/class_accuracies.pkl"
202
+
203
+ # Charger les données depuis le fichier Pickle
204
+ try:
205
+ with open(class_accuracy_path, 'rb') as file:
206
+ class_accuracy = pickle.load(file)
207
+ except Exception as e:
208
+ st.error(f"Erreur lors du chargement du fichier : {e}")
209
+ class_accuracy = {}
210
+
211
+ if not isinstance(class_accuracy, dict):
212
+ st.error(f"Expected a dictionary, but got: {type(class_accuracy)}")
213
+ else:
214
+ # Conversion des données en DataFrame
215
+ df_accuracy = pd.DataFrame(list(class_accuracy.items()), columns=['Tumor Type', 'Accuracy'])
216
+ df_accuracy['Accuracy'] = ((df_accuracy['Accuracy'] * 100).round()).astype(int)
217
+
218
+ # Générer le graphique à barres avec Plotly
219
+ fig = px.bar(df_accuracy, x='Tumor Type', y='Accuracy',
220
+ text='Accuracy', color='Tumor Type',
221
+ title="Model Performance",
222
+ labels={'Accuracy': 'Accuracy (%)', 'Tumor Type': 'Tumor Type'})
223
+
224
+ fig.update_traces(texttemplate='%{text}%', textposition='outside')
225
+
226
+ # Afficher le graphique dans Streamlit
227
+ st.plotly_chart(fig, use_container_width=True)
228
+
229
+
230
+ st.markdown("""<i>The model's accuracy was evaluated across two types of tumors (pituitary and meningioma) and no tumor type.</i>
231
+ <i>This evaluation is vital for determining if the model performs consistently across different tumor classifications, or if it encounters difficulties in accurately distinguishing between these two types of tumors.""",
232
+ unsafe_allow_html=True)
233
+
234
+ st.markdown(" ")
235
+
236
+ st.markdown("""**Interpretation**: <br>
237
+ Our model demonstrates high accuracy in predicting cancerous type tumors (meningioma) as well as 'healthy' brain scans (no tumor) with a 98% accuracy for both.
238
+ It is observed that the model's performance is lower for pituitary type tumors, as it is around 81%.
239
+ This discrepancy may indicate that the model finds it more challenging to distinguish pituitary tumors from other tumor
240
+ types, possibly due to their unique characteristics or lower representation in the training data.
241
+ """, unsafe_allow_html=True)
242
+
243
+ with tab2:
244
+ #st.subheader("Model Explainability with Grad-CAM")
245
+ st.info("""**Explainability in AI** refers to the ability to **understand and interpret how AI systems make predictions** and how to quantify the impact of the provided data on its results.
246
+ In the case of image classification, explainability can be measured by analyzing which of the image's pixel had the most impact on the model's output.""")
247
+ st.markdown(" ")
248
+ st.markdown("""The following images show the output of image classification explainability applied on three images used during training. <br>
249
+ Pixels that are colored in 'red' had a larger impact on the model's output and thus its ability to distinguish different tumor types (or none).
250
+
251
+ """, unsafe_allow_html=True)
252
+
253
+ st.markdown(" ")
254
+ gradcam_images_paths = ["images/meningioma_tumor.png", "images/no_tumor.png", "images/pituitary.png"]
255
+ class_names = ["Meningioma Tumor", "No Tumor", "Pituitary Tumor"]
256
+
257
+ for path, class_name in zip(gradcam_images_paths, class_names):
258
+ st.image(path, caption=f"Explainability for {class_name}")
259
+
260
+ # st.markdown("""
261
+ # <b>Interpretation</b>: <br>
262
+
263
+ # ### Meningioma Tumors <br>
264
+ # **Meningiomas** are tumors that originate from the meninges, the layers of tissue
265
+ # that envelop the brain and spinal cord. Although they are most often benign
266
+ # (noncancerous) and grow slowly, their location can cause significant issues by
267
+ # exerting pressure on the brain or spinal cord. Meningiomas can occur at various
268
+ # places around the brain and spinal cord and are more common in women than in men.
269
+
270
+ # ### Pituitary Tumors <br>
271
+ # **Pituitary** are growths that develop in the pituitary gland, a small gland located at the
272
+ # base of the brain, behind the nose, and between the ears. Despite their critical location,
273
+ # the majority of pituitary tumors are benign and grow slowly. This gland regulates many of the
274
+ # hormones that control various body functions, so even a small tumor can affect hormone production,
275
+ # leading to a variety of symptoms.""", unsafe_allow_html=True)
276
+
277
+
278
+ #################################################
279
+
280
+ st.markdown(" ")
281
+ st.markdown(" ")
282
+ st.markdown("### Classify MRI scans 🆕")
283
+
284
+ st.info("**Note**: The brain tumor classification model can classify new MRI images only if it has been previously trained.")
285
+
286
+ st.markdown("""Here, you are provided the MRI scans of nine new patients.
287
+ Select an image and press 'run the model' to classify the MRI as either a pituitary tumor, a meningioma tumor or no tumor.""")
288
+
289
+
290
+ # Définition des catégories de tumeurs
291
+ categories = ["pituitary tumor", "no tumor", "meningioma tumor"]
292
+
293
+ # Selection des images
294
+ images = os.listdir(DATA_DIR)
295
+ selected_image2 = st.selectbox("Choose an image", images, key="selectionbox_key_1")
296
+
297
+ # show image
298
+ image_path = os.path.join(DATA_DIR, selected_image2)
299
+ image = Image.open(image_path)
300
+ st.markdown("#### You've selected the following image.")
301
+ st.image(image, caption="Image selected", width=300)
302
+
303
+
304
+ if st.button('**Make predictions**', key='another_action_button'):
305
+ results_path = r"data/image_classification"
306
+ df_results = load_data_pickle(results_path, "results.pkl")
307
+ predicted_category = df_results.loc[df_results["image"]==selected_image2,"class"].to_numpy()
308
+
309
+ # # Prétraitement et prédiction
310
+ # image_preprocessed = preprocess(image)
311
+ # predicted_tensor, _ = predict(image_preprocessed, model)
312
+
313
+ # predicted_idx = predicted_tensor.item()
314
+ # predicted_category = categories[predicted_idx]
315
+
316
+ # Affichage de la prédiction avec la catégorie prédite
317
+ if predicted_category == "pituitary":
318
+ st.warning(f"**Results**: Pituitary tumor was detected. ")
319
+ elif predicted_category == "no tumor":
320
+ st.success(f"**Results**: No tumor was detected.")
321
+ elif predicted_category == "meningnoma":
322
+ st.error(f"**Results**: Meningioma was detected.")
323
+
324
+
325
+ # image_path = os.path.join(DATA_DIR, selected_image2)
326
+ # image = Image.open(image_path)
327
+ # st.image(image, caption="Image selected", width=450)
328
+
329
+
330
+
pages/object_detection.py CHANGED
@@ -12,6 +12,9 @@ from PIL import Image
12
  from transformers import YolosFeatureExtractor, YolosForObjectDetection
13
  from torchvision.transforms import ToTensor, ToPILImage
14
  from annotated_text import annotated_text
 
 
 
15
 
16
 
17
  st.set_page_config(layout="wide")
@@ -134,7 +137,8 @@ cats = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jac
134
 
135
  ######################################################################################################################################
136
 
137
- st.markdown("# Object Detection")
 
138
 
139
  st.markdown("### What is Object Detection ?")
140
 
@@ -155,28 +159,38 @@ st.markdown("""Common applications of Object Detection include:
155
  - **Retail** 🏬 : Implementing smart shelves and checkout systems that use object detection to track inventory and monitor stock levels.
156
  - **Healthcare** 👨‍⚕️: Detecting and tracking anomalies in medical images, such as tumors or abnormalities, for diagnostic purposes or prevention.
157
  - **Manufacturing** 🏭: Quality control on production lines by detecting defects or irregularities in manufactured products. Ensuring workplace safety by monitoring the movement of workers and equipment.
158
- - **Fashion and E-commerce** 🛍️ : Improving virtual try-on experiences by accurately detecting and placing virtual clothing items on users.
159
  """)
160
 
161
 
 
 
162
  st.markdown(" ")
163
  st.divider()
164
 
165
- st.markdown("## Fashion Object Detection 👗")
166
  # st.info("""This use case showcases the application of **Object detection** to detect clothing items/features on images. <br>
167
  # The images used were gathered from Dior's""")
168
- st.info("""In this use case, we are going to identify and locate different articles of clothings, as well as finer details such as a collar or pocket using an object detection AI model.
169
- The images used were taken from **Dior's 2020 Fall Women Fashion Show**.""")
 
 
170
 
171
  st.markdown(" ")
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- images_dior = [os.path.join("data/dior_show/images",url) for url in os.listdir("data/dior_show/images") if url != "results"]
174
- columns_img = st.columns(4)
175
- for img, col in zip(images_dior,columns_img):
176
- with col:
177
- st.image(img)
178
 
179
  st.markdown(" ")
 
180
 
181
 
182
  st.markdown("### About the model 📚")
@@ -204,12 +218,12 @@ st.markdown("")
204
  ############## SELECT AN IMAGE ###############
205
 
206
  st.markdown("### Select an image 🖼️")
207
- #st.markdown("""**Select an image that you wish to run the Object Detection model on.**""")
208
 
209
  image_ = None
210
  fashion_images_path = r"data/dior_show/images"
211
  list_images = os.listdir(fashion_images_path)
212
- image_name = st.selectbox("Select the image you wish to run the model on", list_images)
213
  image_ = os.path.join(fashion_images_path, image_name)
214
  st.image(image_, width=300)
215
 
@@ -278,13 +292,19 @@ dict_cats_final = {key:value for (key,value) in dict_cats.items() if value in se
278
  ############## SELECT A THRESHOLD ###############
279
 
280
  st.markdown("### Define a threshold for predictions 🔎")
281
- st.markdown("""This section allows you to control how confident you want your model to be with its predictions. <br>
282
- Objects that are given a lower score than the chosen threshold will be ignored in the final results.""", unsafe_allow_html=True)
283
-
284
- st.markdown(" Below is an example of probability scores given by object detection models for each element detected.")
 
285
 
 
 
286
 
287
- st.image("images/probability_od.png", caption="Example with bounding boxes and probability scores given by object detection models")
 
 
 
288
 
289
  st.markdown(" ")
290
 
@@ -346,7 +366,8 @@ if run_model:
346
  # PLOT BOUNDING BOX AND BARS/PROBA
347
  col1, col2 = st.columns(2)
348
  with col1:
349
- #st.markdown("**Bounding box results**")
 
350
  bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
351
  colors_used = plot_results(image, probas[keep], bboxes_scaled)
352
 
@@ -356,7 +377,12 @@ if run_model:
356
  st.error("""No objects were detected on the image.
357
  Decrease your threshold or choose differents items to detect.""")
358
  else:
 
 
 
 
359
  visualize_probas(probas, threshold, colors_used)
 
360
 
361
 
362
  else:
 
12
  from transformers import YolosFeatureExtractor, YolosForObjectDetection
13
  from torchvision.transforms import ToTensor, ToPILImage
14
  from annotated_text import annotated_text
15
+ from st_pages import add_indentation
16
+
17
+ #add_indentation()
18
 
19
 
20
  st.set_page_config(layout="wide")
 
137
 
138
  ######################################################################################################################################
139
 
140
+ #st.image("images/od_header.jpg")
141
+ st.markdown("# Object Detection 📹")
142
 
143
  st.markdown("### What is Object Detection ?")
144
 
 
159
  - **Retail** 🏬 : Implementing smart shelves and checkout systems that use object detection to track inventory and monitor stock levels.
160
  - **Healthcare** 👨‍⚕️: Detecting and tracking anomalies in medical images, such as tumors or abnormalities, for diagnostic purposes or prevention.
161
  - **Manufacturing** 🏭: Quality control on production lines by detecting defects or irregularities in manufactured products. Ensuring workplace safety by monitoring the movement of workers and equipment.
 
162
  """)
163
 
164
 
165
+
166
+ ############################# USE CASE #############################
167
  st.markdown(" ")
168
  st.divider()
169
 
170
+ st.markdown("# Fashion Object Detection 👗")
171
  # st.info("""This use case showcases the application of **Object detection** to detect clothing items/features on images. <br>
172
  # The images used were gathered from Dior's""")
173
+ st.info("""**Object detection models** can very valuable for fashion retailers wishing to improve customer experience by providing, for example, **product recognition**, **visual search**
174
+ and even **virtual try-ons**.
175
+ In this use case, we are going to show an object detection model that as able to identify and locate different articles of clothings on fashipn show images.
176
+ """)
177
 
178
  st.markdown(" ")
179
+ st.markdown(" ")
180
+
181
+ # images_dior = [os.path.join("data/dior_show/images",url) for url in os.listdir("data/dior_show/images") if url != "results"]
182
+ # columns_img = st.columns(4)
183
+ # for img, col in zip(images_dior,columns_img):
184
+ # with col:
185
+ # st.image(img)
186
+
187
+ _, col, _ = st.columns([0.1,0.8,0.1])
188
+ with col:
189
+ st.image("images/fashion_od2.png")
190
 
 
 
 
 
 
191
 
192
  st.markdown(" ")
193
+ st.markdown(" ")
194
 
195
 
196
  st.markdown("### About the model 📚")
 
218
  ############## SELECT AN IMAGE ###############
219
 
220
  st.markdown("### Select an image 🖼️")
221
+ st.markdown("""The images provided were taken from **Dior's 2020 Fall Women Fashion Show**""")
222
 
223
  image_ = None
224
  fashion_images_path = r"data/dior_show/images"
225
  list_images = os.listdir(fashion_images_path)
226
+ image_name = st.selectbox("Choose an image", list_images)
227
  image_ = os.path.join(fashion_images_path, image_name)
228
  st.image(image_, width=300)
229
 
 
292
  ############## SELECT A THRESHOLD ###############
293
 
294
  st.markdown("### Define a threshold for predictions 🔎")
295
+ st.markdown("""In this section, you can select a threshold for the model's final predictions. <br>
296
+ Objects that are given a lower score than the chosen threshold will be ignored in the final results""", unsafe_allow_html=True)
297
+ st.info("""**Note**: Object detection models detect objects using bounding boxes as well as assign objects to specific classes.
298
+ Each object is given a class based on a probability score computed by the model. A high probability signals that the model is confident in its prediction.
299
+ On the contrary, a lower probability score signals a level of uncertainty.""")
300
 
301
+ st.markdown(" ")
302
+ #st.markdown("The images below are examples of probability scores given by object detection models for each element detected.")
303
 
304
+ _, col, _ = st.columns([0.2,0.6,0.2])
305
+ with col:
306
+ st.image("images/probability_od.png",
307
+ caption="Examples of object detection with bounding boses and probability scores")
308
 
309
  st.markdown(" ")
310
 
 
366
  # PLOT BOUNDING BOX AND BARS/PROBA
367
  col1, col2 = st.columns(2)
368
  with col1:
369
+ st.markdown(" ")
370
+ st.markdown("##### 1. Bounding box results")
371
  bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)
372
  colors_used = plot_results(image, probas[keep], bboxes_scaled)
373
 
 
377
  st.error("""No objects were detected on the image.
378
  Decrease your threshold or choose differents items to detect.""")
379
  else:
380
+ st.markdown(" ")
381
+ st.markdown("##### 2. Probability score of each object")
382
+ st.info("""**Note**: Some items might have been detected more than once on the image.
383
+ For these items, we've computed the average probability score across all detections.""")
384
  visualize_probas(probas, threshold, colors_used)
385
+
386
 
387
 
388
  else:
pages/recommendation_system.py CHANGED
@@ -6,21 +6,24 @@ import pickle
6
  import os
7
  import altair as alt
8
  import plotly.express as px
 
9
  from sklearn.preprocessing import MinMaxScaler
10
  from sklearn.metrics.pairwise import cosine_similarity
11
  from annotated_text import annotated_text
12
  from utils import load_data_pickle, load_model_pickle, load_data_csv
 
13
 
 
14
 
15
 
16
  st.set_page_config(layout="wide")
17
 
18
-
19
- st.markdown("# Recommendation system")
20
 
21
  st.markdown("### What is a Recommendation System ?")
22
 
23
- st.info("""**Recommendation systems** are AI algorithms built to **suggest** or **recommend** **products** to consumers.
24
  They are very common in social media platforms such as TikTok, Youtube or Instagram or e-commerce websites as they help improve and personalize a consumer's experience.""")
25
 
26
  st.markdown("""There are two methods to build recommendation systems:
@@ -123,7 +126,7 @@ if select_usecase == "Movie recommendation system 📽️":
123
 
124
 
125
  # Description of the use case
126
- st.markdown("""## Movie Recommendation System 📽️""")
127
 
128
  #st.info(""" """)
129
 
@@ -349,7 +352,10 @@ From gleaming skyscrapers to vibrant neighborhoods, this cosmopolitan gem in Sou
349
  if see_top_places:
350
  st.markdown(top_places)
351
 
352
- st.markdown("""## Hotel Recommendation System 🛎️""")
 
 
 
353
 
354
  st.info("""This use case shows how you can create personalized hotel recommendations using a recommendation system with **content-based Filtering**.
355
  Analyzing location, amenities, price, and reviews, the model suggests tailored hotel recommendation based on the user's preference.
 
6
  import os
7
  import altair as alt
8
  import plotly.express as px
9
+
10
  from sklearn.preprocessing import MinMaxScaler
11
  from sklearn.metrics.pairwise import cosine_similarity
12
  from annotated_text import annotated_text
13
  from utils import load_data_pickle, load_model_pickle, load_data_csv
14
+ from st_pages import add_indentation
15
 
16
+ #add_indentation()
17
 
18
 
19
  st.set_page_config(layout="wide")
20
 
21
+ #st.image("images/recom_system_header.png")
22
+ st.markdown("# Recommendation systems 🛒")
23
 
24
  st.markdown("### What is a Recommendation System ?")
25
 
26
+ st.info("""**Recommendation systems** are algorithms built to **suggest** or **recommend** **products** to consumers.
27
  They are very common in social media platforms such as TikTok, Youtube or Instagram or e-commerce websites as they help improve and personalize a consumer's experience.""")
28
 
29
  st.markdown("""There are two methods to build recommendation systems:
 
126
 
127
 
128
  # Description of the use case
129
+ st.markdown("""# Movie Recommendation System 📽️""")
130
 
131
  #st.info(""" """)
132
 
 
352
  if see_top_places:
353
  st.markdown(top_places)
354
 
355
+
356
+
357
+
358
+ st.markdown("""# Hotel Recommendation System 🛎️""")
359
 
360
  st.info("""This use case shows how you can create personalized hotel recommendations using a recommendation system with **content-based Filtering**.
361
  Analyzing location, amenities, price, and reviews, the model suggests tailored hotel recommendation based on the user's preference.
pages/sentiment_analysis.py CHANGED
@@ -7,11 +7,14 @@ import pandas as pd
7
  import numpy as np
8
  import altair as alt
9
  import plotly.express as px
 
10
 
11
  from pysentimiento import create_analyzer
12
  from utils import load_data_pickle
13
 
14
  st.set_page_config(layout="wide")
 
 
15
 
16
  def clean_text(text):
17
  pattern_punct = r"[^\w\s.',:/]"
@@ -30,8 +33,8 @@ def load_sa_model():
30
 
31
 
32
 
33
-
34
- st.markdown("# Sentiment Analysis")
35
 
36
  st.markdown("### What is Sentiment Analysis ?")
37
 
@@ -62,14 +65,14 @@ st.divider()
62
  #use_case = st.selectbox("", sa_pages, label_visibility="collapsed")
63
 
64
 
65
- st.markdown("### Customer Reviews 📝")
66
  st.info("""In this use case, **sentiment analysis** is used to predict the **polarity** (negative, neutral, positive) of customer reviews.
67
  You can try the application by using the provided starbucks customer reviews, or by writing your own.""")
68
  st.markdown(" ")
69
 
70
- _, col, _ = st.columns([0.25,0.5,0.25])
71
  with col:
72
- st.image("images/reviews.jpg")
73
 
74
  st.markdown(" ")
75
 
 
7
  import numpy as np
8
  import altair as alt
9
  import plotly.express as px
10
+ from st_pages import add_indentation
11
 
12
  from pysentimiento import create_analyzer
13
  from utils import load_data_pickle
14
 
15
  st.set_page_config(layout="wide")
16
+ #add_indentation()
17
+
18
 
19
  def clean_text(text):
20
  pattern_punct = r"[^\w\s.',:/]"
 
33
 
34
 
35
 
36
+ #st.image("images/sa_header.jpg")
37
+ st.markdown("# Sentiment Analysis 👍")
38
 
39
  st.markdown("### What is Sentiment Analysis ?")
40
 
 
65
  #use_case = st.selectbox("", sa_pages, label_visibility="collapsed")
66
 
67
 
68
+ st.markdown("# Customer Review Analysis 📝")
69
  st.info("""In this use case, **sentiment analysis** is used to predict the **polarity** (negative, neutral, positive) of customer reviews.
70
  You can try the application by using the provided starbucks customer reviews, or by writing your own.""")
71
  st.markdown(" ")
72
 
73
+ _, col, _ = st.columns([0.2,0.6,0.2])
74
  with col:
75
+ st.image("images/reviews.png",use_column_width=True)
76
 
77
  st.markdown(" ")
78
 
pages/supervised_unsupervised_page.py CHANGED
@@ -7,12 +7,14 @@ import plotly.express as px
7
  from PIL import Image
8
 
9
  from utils import load_data_pickle, load_model_pickle
 
10
  from annotated_text import annotated_text
11
 
12
  #####################################################################################
13
  # PAGE CONFIG
14
  #####################################################################################
15
 
 
16
  st.set_page_config(layout="wide")
17
 
18
 
@@ -21,20 +23,21 @@ st.set_page_config(layout="wide")
21
  # INTRO
22
  #####################################################################################
23
 
24
-
25
- st.markdown("# Supervised vs Unsupervised Learning")
26
 
27
  st.info("""There are two main types of models in the field of Data Science, **Supervised** and **Unsupervised learning** models.
28
  Being able to distinguish which type of model fits your data is an essential step in building any AI project.""")
29
 
 
30
  st.markdown(" ")
31
  #st.markdown("## What are the differences between both ?")
32
 
33
  col1, col2 = st.columns(2, gap="large")
34
 
35
  with col1:
36
- st.markdown("### Supervised Learning")
37
- st.markdown("""In supervised learning, models are trained by learning from **labeled data**. <br>
38
  Labeled data provides to the model the desired output, which it will then use to learn relevant patterns and make predictions.
39
  - A model is first **trained** to make predictions using labeled data
40
  - The trained model can then be used to **predict values** for new data.
@@ -43,15 +46,15 @@ with col1:
43
  st.image("images/supervised_learner.png", caption="An example of supervised learning")
44
 
45
  with col2:
46
- st.markdown("### Unsupervised Learning")
47
- st.markdown("""In unsupervised learning, models **learn the data's inherent structure** without any explicit guidance on what to look for.
48
  The algorithm will identify any naturally occurring patterns in the dataset using **unlabeled data**.
49
  - They can be useful for applications where the goal is to discover **unknown groupings** in the data.
50
  - They are also used to identify unusual patterns or **outliers**.
51
  """, unsafe_allow_html=True)
52
  st.markdown(" ")
53
  st.image("images/unsupervised_learning.png", caption="An example of unsupervised Learning",
54
- use_column_width=True)
55
 
56
  st.markdown(" ")
57
 
@@ -88,7 +91,7 @@ if learning_type == "Supervised Learning":
88
 
89
  ## Description of the use case
90
  st.divider()
91
- st.markdown("## Credit score classification 💯")
92
  st.info("""**Classification** is a type of supervised learning where the goal is to categorize input data into predefined classes or categories.
93
  In this case, we will build a **credit score classification** model that predicts if a client will have a **'Bad'**, **'Standard'** or **'Good'** credit score.""")
94
  st.markdown(" ")
@@ -347,7 +350,7 @@ if learning_type == "Supervised Learning":
347
 
348
  ## Description of the use case
349
  st.divider()
350
- st.markdown("## Customer churn prediction ❌")
351
  st.info(""" Classification is a type of supervised learning model whose goal is to categorize input data into predefined classes or categories.
352
  In this example, we will build a **customer churn classification model** that can predict whether a customer is likely to leave a company's service in the future using historical data.
353
  """)
@@ -670,7 +673,7 @@ if learning_type == "Unsupervised Learning":
670
 
671
  # st.divider()
672
  st.divider()
673
- st.markdown("## Customer Segmentation (Clustering) 🧑‍🤝‍🧑")
674
 
675
  st.info("""**Unsupervised learning** models are valulable tools for cases where you want your model to discover patterns by itself, without having to give it examples to learn from (especially if you don't have labeled data).
676
  In this use case, we will show how they can be useful for **Customer Segmentation** to detect unknown groups of clients in a company's customer base.
 
7
  from PIL import Image
8
 
9
  from utils import load_data_pickle, load_model_pickle
10
+ from st_pages import add_indentation
11
  from annotated_text import annotated_text
12
 
13
  #####################################################################################
14
  # PAGE CONFIG
15
  #####################################################################################
16
 
17
+ #add_indentation()
18
  st.set_page_config(layout="wide")
19
 
20
 
 
23
  # INTRO
24
  #####################################################################################
25
 
26
+ #st.image("images/ML_header.jpg", use_column_width=True)
27
+ st.markdown("# Supervised vs Unsupervised Learning 🔍")
28
 
29
  st.info("""There are two main types of models in the field of Data Science, **Supervised** and **Unsupervised learning** models.
30
  Being able to distinguish which type of model fits your data is an essential step in building any AI project.""")
31
 
32
+ st.markdown(" ")
33
  st.markdown(" ")
34
  #st.markdown("## What are the differences between both ?")
35
 
36
  col1, col2 = st.columns(2, gap="large")
37
 
38
  with col1:
39
+ st.markdown("## Supervised Learning")
40
+ st.markdown("""Supervised learning models are trained by learning from **labeled data**. <br>
41
  Labeled data provides to the model the desired output, which it will then use to learn relevant patterns and make predictions.
42
  - A model is first **trained** to make predictions using labeled data
43
  - The trained model can then be used to **predict values** for new data.
 
46
  st.image("images/supervised_learner.png", caption="An example of supervised learning")
47
 
48
  with col2:
49
+ st.markdown("## Unsupervised Learning")
50
+ st.markdown("""Unsupervised learning models learn the data's inherent structure without any explicit guidance on what to look for.
51
  The algorithm will identify any naturally occurring patterns in the dataset using **unlabeled data**.
52
  - They can be useful for applications where the goal is to discover **unknown groupings** in the data.
53
  - They are also used to identify unusual patterns or **outliers**.
54
  """, unsafe_allow_html=True)
55
  st.markdown(" ")
56
  st.image("images/unsupervised_learning.png", caption="An example of unsupervised Learning",
57
+ use_column_width=True)
58
 
59
  st.markdown(" ")
60
 
 
91
 
92
  ## Description of the use case
93
  st.divider()
94
+ st.markdown("# Credit score classification 💯")
95
  st.info("""**Classification** is a type of supervised learning where the goal is to categorize input data into predefined classes or categories.
96
  In this case, we will build a **credit score classification** model that predicts if a client will have a **'Bad'**, **'Standard'** or **'Good'** credit score.""")
97
  st.markdown(" ")
 
350
 
351
  ## Description of the use case
352
  st.divider()
353
+ st.markdown("# Customer churn prediction ❌")
354
  st.info(""" Classification is a type of supervised learning model whose goal is to categorize input data into predefined classes or categories.
355
  In this example, we will build a **customer churn classification model** that can predict whether a customer is likely to leave a company's service in the future using historical data.
356
  """)
 
673
 
674
  # st.divider()
675
  st.divider()
676
+ st.markdown("# Customer Segmentation 🧑‍🤝‍🧑")
677
 
678
  st.info("""**Unsupervised learning** models are valulable tools for cases where you want your model to discover patterns by itself, without having to give it examples to learn from (especially if you don't have labeled data).
679
  In this use case, we will show how they can be useful for **Customer Segmentation** to detect unknown groups of clients in a company's customer base.