Spaces:
Sleeping
Sleeping
import torch | |
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import gradio as gr | |
from PIL import Image | |
# Hugging Face 模型仓库路径 | |
model_path = "hiko1999/Qwen2-Wildfire-2B" # 替换为你的模型路径 | |
# 加载 Hugging Face 上的模型和 processor | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.bfloat16) # 移除 device_map 参数以避免自动分配到 GPU | |
processor = AutoProcessor.from_pretrained(model_path) | |
# 定义预测函数 | |
def predict(image): | |
# 将上传的图片处理为模型需要的格式 | |
messages = [{"role": "user", | |
"content": [{"type": "image", "image": image}, {"type": "text", "text": "Describe this image."}]}] | |
# 处理图片输入 | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") | |
# 将数据转移到 CPU | |
inputs = inputs.to("cpu") # 使用 CPU 而不是 CUDA | |
# 生成模型输出 | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, | |
clean_up_tokenization_spaces=False) | |
return output_text[0] # 返回生成的文本 | |
# Gradio界面 | |
def gradio_interface(image): | |
result = predict(image) | |
return f"预测结果:{result}" | |
# 创建Gradio接口 | |
interface = gr.Interface(fn=gradio_interface, | |
inputs=gr.Image(type="pil"), # 输入的图像 | |
outputs="text", # 输出结果 | |
title="火灾场景多模态模型预测", | |
description="上传图片进行火灾预测。") | |
# 启动接口 | |
interface.launch() | |