import torch from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import gradio as gr from PIL import Image # Hugging Face 模型仓库路径 model_path = "hiko1999/Qwen2-Wildfire-2B" # 替换为你的模型路径 # 加载 Hugging Face 上的模型和 processor tokenizer = AutoTokenizer.from_pretrained(model_path) model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.bfloat16) # 移除 device_map 参数以避免自动分配到 GPU processor = AutoProcessor.from_pretrained(model_path) # 定义预测函数 def predict(image): # 将上传的图片处理为模型需要的格式 messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": "Describe this image."}]}] # 处理图片输入 text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") # 将数据转移到 CPU inputs = inputs.to("cpu") # 使用 CPU 而不是 CUDA # 生成模型输出 generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) return output_text[0] # 返回生成的文本 # Gradio界面 def gradio_interface(image): result = predict(image) return f"预测结果:{result}" # 创建Gradio接口 interface = gr.Interface(fn=gradio_interface, inputs=gr.Image(type="pil"), # 输入的图像 outputs="text", # 输出结果 title="火灾场景多模态模型预测", description="上传图片进行火灾预测。") # 启动接口 interface.launch()