Spaces:
Runtime error
Runtime error
from transformers.tools.base import Tool | |
from transformers.utils import is_accelerate_available | |
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
TEXT_TO_IMAGE_DESCRIPTION = ( | |
"This is a tool that creates an image according to a prompt, which is a text description. It takes an input named `prompt` which " | |
"contains the image description and outputs an image." | |
) | |
class TextToImageTool(Tool): | |
default_checkpoint = "runwayml/stable-diffusion-v1-5" | |
description = TEXT_TO_IMAGE_DESCRIPTION | |
inputs = ['text'] | |
outputs = ['image'] | |
def __init__(self, device=None, **hub_kwargs) -> None: | |
if is_accelerate_available(): | |
from accelerate import PartialState | |
else: | |
raise ImportError("Accelerate should be installed in order to use tools.") | |
super().__init__() | |
self.device = device | |
self.pipeline = None | |
self.hub_kwargs = hub_kwargs | |
def setup(self): | |
if self.device is None: | |
self.device = PartialState().default_device | |
self.pipeline = DiffusionPipeline.from_pretrained(self.default_checkpoint) | |
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config) | |
self.pipeline.to(self.device) | |
if self.device.type == "cuda": | |
self.pipeline.to(torch_dtype=torch.float16) | |
self.is_initialized = True | |
def __call__(self, prompt): | |
if not self.is_initialized: | |
self.setup() | |
negative_prompt = "low quality, bad quality, deformed, low resolution" | |
added_prompt = " , highest quality, highly realistic, very high resolution" | |
return self.pipeline(prompt + added_prompt, negative_prompt=negative_prompt, num_inference_steps=25).images[0] | |