#!/usr/bin/env python import pathlib import shlex import subprocess import gradio as gr import PIL.Image import spaces from model import Model from settings import MAX_SEED from utils import randomize_seed_fn def create_demo(model: Model) -> gr.Blocks: if not pathlib.Path("corgi.png").exists(): subprocess.run( # noqa: S603 shlex.split( "wget https://raw.githubusercontent.com/openai/shap-e/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/examples/example_data/corgi.png -O corgi.png" ), check=True, ) examples = ["corgi.png"] @spaces.GPU def process_example_fn(image_path: str) -> str: return model.run_image(image_path) @spaces.GPU def run(image: PIL.Image.Image, seed: int, guidance_scale: float, num_inference_steps: int) -> str: return model.run_image(image, seed, guidance_scale, num_inference_steps) with gr.Blocks() as demo: with gr.Group(): image = gr.Image(label="Input image", show_label=False, type="pil") run_button = gr.Button("Run") result = gr.Model3D(label="Result", show_label=False) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=20, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=2, maximum=100, step=1, value=64, ) gr.Examples( examples=examples, inputs=image, outputs=result, fn=process_example_fn, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, api_name=False, concurrency_limit=None, ).then( fn=run, inputs=[ image, seed, guidance_scale, num_inference_steps, ], outputs=result, api_name="image-to-3d", concurrency_id="gpu", concurrency_limit=1, ) return demo