from fastapi import FastAPI from pydantic import BaseModel import joblib import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.linear_model import LogisticRegression pipeline_filepath = "tmp/pipeline.joblib" pipeline = joblib.load(pipeline_filepath) app = FastAPI() # Save the model again # joblib.dump(pipeline, pipeline_filepath) class PatientData(BaseModel): Plasma_glucose : float Blood_Work_Result_1: float Blood_Pressure : float Blood_Work_Result_2 : float Blood_Work_Result_3 : float Body_mass_index : float Blood_Work_Result_4: float Age: float Insurance: int @app.get("/") def read_root(): explanation = { 'message': "Welcome to the Sepsis Prediction App", 'description': "This API allows you to predict sepsis based on patient data.", 'usage': "Submit a POST request to /predict with patient data to make predictions.", } return explanation # @app.post("/predict") # def get_data_from_user(data: PatientData): # user_input = data.dict() # input_df = pd.DataFrame([user_input]) # Make predictions using the loaded pipeline # prediction = pipeline.predict(input_df) # probabilities = pipeline.predict_proba(input_df) # probability_of_positive_class = probabilities[0][1] # Calculate the prediction # sepsis_status = "Positive" if prediction[0] == 1 else "Negative" # sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction[0] == 1 else "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms." # result = { # 'predicted_sepsis': sepsis_status, # 'probability': probability_of_positive_class, # 'sepsis_explanation': sepsis_explanation # } # return result import logging # Configure logging logging.basicConfig(level=logging.INFO) # Set the desired logging level @app.post("/predict") def get_data_from_user(data: PatientData): try: logging.info("Received data: %s", data.dict()) user_input = data.dict() input_df = pd.DataFrame([user_input]) # Make predictions using the loaded pipeline prediction = pipeline.predict(input_df) probabilities = pipeline.predict_proba(input_df) probability_of_positive_class = probabilities[0][1] # Calculate the prediction sepsis_status = "Positive" if prediction[0] == 1 else "Negative" result = { 'predicted_sepsis': sepsis_status, 'probability': probability_of_positive_class, } return result except Exception as e: logging.error("Error: %s", e) return {"error": "An error occurred during prediction."}