Spaces:
Sleeping
Sleeping
File size: 9,641 Bytes
a1bd2bd 416fc9c a1bd2bd 416fc9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os
from typing import List
import uuid
import chainlit as cl
from chainlit.types import AskFileResponse
from langchain.memory import ConversationBufferMemory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_community.document_loaders import PyMuPDFLoader, TextLoader
from langchain.prompts import MessagesPlaceholder
from langchain.prompts import ChatPromptTemplate
from langchain.chains.history_aware_retriever import create_history_aware_retriever
from langchain.chains.retrieval import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_experimental.text_splitter import SemanticChunker
from langchain_qdrant import QdrantVectorStore
from langchain_core.documents import Document
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_openai import ChatOpenAI
from langchain_core.runnables.history import RunnableWithMessageHistory
# from chainlit.input_widget import Select, Switch, Slider
from dotenv import load_dotenv
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
load_dotenv()
BOR_FILE_PATH = "https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf"
NIST_FILE_PATH = "https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf"
SMALL_DOC = "https://arxiv.org/pdf/1908.10084" # 11 pages Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
documents_to_preload = [
BOR_FILE_PATH,
NIST_FILE_PATH
# SMALL_DOC
]
collection_name = "ai-safety"
welcome_message = """
Welcome to the chatbot to clarify all your AI Safety related queries.:
Now preloading below documents:
1. Blueprint for an AI Bill of Rights
2. NIST AI Standards
Please wait for a moment to load the documents.
"""
chat_model_name = "gpt-4o"
embedding_model_name = "jeevanions/finetuned_arctic-embedd-l" # Fine tuned model used
chat_model = ChatOpenAI(model=chat_model_name, temperature=0)
async def connect_to_qdrant():
embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_name)
qdrant_url = os.environ["QDRANT_URL"]
qdrant_api_key = os.environ["QDRANT_API_KEY"]
collection_name = os.environ["COLLECTION_NAME"]
qdrant_client = QdrantClient(url=qdrant_url,api_key=qdrant_api_key)
vector_store = QdrantVectorStore(
client=qdrant_client,
collection_name=collection_name,
embedding=embedding_model,
)
return vector_store.as_retriever(search_type="similarity_score_threshold",search_kwargs={'k':10,'score_threshold': 0.8})
async def get_contextual_compressed_retriever(retriver):
base_retriever = retriver
compressor_llm = ChatOpenAI(temperature=0, model_name="gpt-4o", max_tokens=4000)
compressor = LLMChainExtractor.from_llm(compressor_llm)
#Combine the retriever with the compressor
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=base_retriever
)
return compression_retriever
def initialize_vectorstore(
collection_name: str,
embedding_model,
dimension,
distance_metric: Distance = Distance.COSINE,
):
client = QdrantClient(":memory:")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=dimension, distance=distance_metric),
)
vector_store = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=embedding_model,
)
return vector_store
def get_text_splitter(strategy, embedding_model):
if strategy == "semantic":
return SemanticChunker(
embedding_model,
breakpoint_threshold_type="percentile",
breakpoint_threshold_amount=90,
)
def process_file(file: AskFileResponse, text_splitter):
if file.type == "text/plain":
Loader = TextLoader
elif file.type == "application/pdf":
Loader = PyMuPDFLoader
loader = Loader(file.path)
documents = loader.load()
title = documents[0].metadata.get("title")
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
doc.metadata["title"] = title
return docs
def populate_vectorstore(vector_store, docs: List[Document]):
vector_store.add_documents(docs)
return vector_store
def create_history_aware_retriever_self(chat_model, retriever):
contextualize_q_system_prompt = (
"Given a chat history and the latest user question which might reference context in the chat history, "
"formulate a standalone question which can be understood without the chat history. Do NOT answer the question, "
"just reformulate it if needed and otherwise return it as is."
)
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
return create_history_aware_retriever(chat_model, retriever, contextualize_q_prompt)
def create_qa_chain(chat_model):
qa_system_prompt = (
"You are an helpful assistant named 'Shield' and your task is to answer any questions related to AI Safety for the given context."
"Use the following pieces of retrieved context to answer the question."
# "If any questions asked outside AI Safety context, just say that you are a specialist in AI Safety and can't answer that."
# f"When introducing you, just say that you are an AI assistant powered by embedding model {embedding_model_name} and chat model {chat_model_name} and your knowledge is limited to 'Blueprint for an AI Bill of Rights' and 'NIST AI Standards' documents."
"If you don't know the answer, just say that you don't know.\n\n"
"{context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
return create_stuff_documents_chain(chat_model, qa_prompt)
def create_rag_chain(chat_model, retriever):
history_aware_retriever = create_history_aware_retriever_self(chat_model, retriever)
question_answer_chain = create_qa_chain(chat_model)
return create_retrieval_chain(history_aware_retriever, question_answer_chain)
def create_session_id():
session_id = str(uuid.uuid4())
return session_id
@cl.on_chat_start
async def start():
msg = cl.Message(content=welcome_message)
await msg.send()
# Create a session id
session_id = create_session_id()
cl.user_session.set("session_id", session_id)
retriever = await connect_to_qdrant()
contextual_compressed_retriever = await get_contextual_compressed_retriever(retriever)
rag_chain = create_rag_chain(chat_model, contextual_compressed_retriever)
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
# Let the user know that the system is ready
msg.content = msg.content + "\nReady to answer your questions!"
await msg.update()
cl.user_session.set("conversational_rag_chain", conversational_rag_chain)
@cl.on_message
async def main(message: cl.Message):
session_id = cl.user_session.get("session_id")
conversational_rag_chain = cl.user_session.get("conversational_rag_chain")
response = await conversational_rag_chain.ainvoke(
{"input": message.content},
config={"configurable": {"session_id": session_id},
"callbacks":[cl.AsyncLangchainCallbackHandler()]},
)
answer = response["answer"]
source_documents = response["context"]
text_elements = []
unique_pages = set()
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx+1}"
page_number = source_doc.metadata['page']
#page_number = source_doc.metadata.get('page', "NA") # NA or any default value
page = f"Page {page_number}"
text_element_content = source_doc.page_content
text_element_content = text_element_content if text_element_content != "" else "No Content"
#text_elements.append(cl.Text(content=text_element_content, name=source_name))
if page not in unique_pages:
unique_pages.add(page)
text_elements.append(cl.Text(content=text_element_content, name=page))
#text_elements.append(cl.Text(content=text_element_content, name=page))
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\n\n Sources:{', '.join(source_names)}"
else:
answer += "\n\n No sources found"
await cl.Message(content=answer, elements=text_elements).send()
if __name__ == "__main__":
from chainlit.cli import run_chainlit
run_chainlit(__file__) |