File size: 22,087 Bytes
9cf2e86
 
a85ea1b
4e9280e
19c3dbd
9cf2e86
7d9eec3
711929b
4e9280e
c1693be
2db409c
ada247c
c4e96e8
f79aae9
ada247c
 
ccbfe76
a526073
63ab978
9cf2e86
 
 
44db26d
4e9280e
2db409c
 
2e08651
 
 
8126fce
2db409c
 
2d93272
 
184dab0
2d93272
 
f513345
2d93272
c1693be
f7de005
 
19c3dbd
4df5628
19c3dbd
 
 
3ec9a9b
19c3dbd
c14cab5
19c3dbd
f7de005
31912ce
f7de005
 
8a43431
c14cab5
f7de005
19c3dbd
c14cab5
f7de005
 
c14cab5
3764662
f7de005
0da25b6
 
 
 
c14cab5
f7de005
0da25b6
 
 
 
f636e83
f7de005
806824b
c14cab5
f7de005
0da25b6
 
 
c14cab5
 
 
6b0fe26
806824b
c14cab5
6b0fe26
c14cab5
 
 
 
9cf2e86
c1693be
 
 
545761a
c1693be
9cf2e86
4e9280e
 
767d188
4e9280e
 
 
9cf2e86
4e9280e
 
 
 
 
 
5a66e88
4df5628
c14cab5
4e9280e
 
 
 
 
 
9cf2e86
4e9280e
 
4df5628
4e9280e
 
661e83c
4e9280e
 
 
 
 
 
 
 
 
9cf2e86
4df5628
5a66e88
4e9280e
 
 
 
 
 
5a66e88
4e9280e
9cf2e86
4e9280e
4df5628
4e9280e
 
 
 
661e83c
4e9280e
 
 
9cf2e86
4df5628
9cf2e86
1d08db8
4e9280e
d36cf56
4e9280e
 
1d08db8
 
4e9280e
1d08db8
4e9280e
4df5628
4e9280e
 
1d08db8
4e9280e
9cf2e86
f7de005
4e9280e
 
 
f7de005
 
4e9280e
f7de005
 
 
4e9280e
f7de005
 
4e9280e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7de005
 
 
 
4e9280e
 
 
 
 
f7de005
 
4e9280e
f7de005
 
4e9280e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7de005
 
 
 
4e9280e
 
f7de005
4e9280e
 
 
 
f7de005
 
4e9280e
 
 
9cf2e86
4e9280e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7de005
4e9280e
9cf2e86
35245db
8a8890b
 
 
 
 
 
 
 
 
 
 
3fde2e0
31fd6fe
 
 
 
 
8c8001e
 
31fd6fe
 
 
 
 
 
 
 
 
3fde2e0
9cf2e86
6db9d8d
0da25b6
f7de005
f79aae9
18639e5
 
409297c
d7f2438
 
0f16dda
f79aae9
f7de005
 
 
 
7d9eec3
a85ea1b
7d9eec3
a85ea1b
 
7d9eec3
a85ea1b
7d9eec3
a85ea1b
7d9eec3
a85ea1b
711929b
 
7d9eec3
9cf2e86
3fde2e0
9cf2e86
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import argparse
import gradio as gr
from gradio_i18n import Translate, gettext as _
import yaml

from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
                                 INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
                                 UVR_MODELS_DIR, I18N_YAML_PATH)
from modules.utils.files_manager import load_yaml
from modules.whisper.whisper_factory import WhisperFactory
from modules.translation.nllb_inference import NLLBInference
from modules.ui.htmls import *
from modules.utils.cli_manager import str2bool
from modules.utils.youtube_manager import get_ytmetas
from modules.translation.deepl_api import DeepLAPI
from modules.whisper.data_classes import *


class App:
    def __init__(self, args):
        self.args = args
        self.app = gr.Blocks(css=CSS, theme=self.args.theme, delete_cache=(60, 3600))
        self.i18n = Translate(I18N_YAML_PATH)
        self.whisper_inf = WhisperFactory.create_whisper_inference(
            whisper_type=self.args.whisper_type,
            whisper_model_dir=self.args.whisper_model_dir,
            faster_whisper_model_dir=self.args.faster_whisper_model_dir,
            insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
            uvr_model_dir=self.args.uvr_model_dir,
            output_dir=self.args.output_dir,
        )
        self.nllb_inf = NLLBInference(
            model_dir=self.args.nllb_model_dir,
            output_dir=os.path.join(self.args.output_dir, "translations")
        )
        self.deepl_api = DeepLAPI(
            output_dir=os.path.join(self.args.output_dir, "translations")
        )
        self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
        print(f"Use \"{self.args.whisper_type}\" implementation\n"
              f"Device \"{self.whisper_inf.device}\" is detected")

    def create_pipeline_inputs(self):
        whisper_params = self.default_params["whisper"]
        vad_params = self.default_params["vad"]
        diarization_params = self.default_params["diarization"]
        uvr_params = self.default_params["bgm_separation"]

        with gr.Row():
            dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
                                   label=_("Model"))
            dd_lang = gr.Dropdown(choices=self.whisper_inf.available_langs + [AUTOMATIC_DETECTION],
                                  value=AUTOMATIC_DETECTION if whisper_params["lang"] == AUTOMATIC_DETECTION.unwrap()
                                  else whisper_params["lang"], label=_("Language"))
            dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt", "LRC"], value=whisper_params["file_format"], label=_("File Format"))
        with gr.Row():
            cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label=_("Translate to English?"),
                                       interactive=True)
        with gr.Row():
            cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"],
                                       label=_("Add a timestamp to the end of the filename"),
                                       interactive=True)

        with gr.Accordion(_("Advanced Parameters"), open=False):
            whisper_inputs = WhisperParams.to_gradio_inputs(defaults=whisper_params, only_advanced=True,
                                                            whisper_type=self.args.whisper_type,
                                                            available_compute_types=self.whisper_inf.available_compute_types,
                                                            compute_type=self.whisper_inf.current_compute_type)

        with gr.Accordion(_("Background Music Remover Filter"), open=False):
            uvr_inputs = BGMSeparationParams.to_gradio_input(defaults=uvr_params,
                                                             available_models=self.whisper_inf.music_separator.available_models,
                                                             available_devices=self.whisper_inf.music_separator.available_devices,
                                                             device=self.whisper_inf.music_separator.device)

        with gr.Accordion(_("Voice Detection Filter"), open=False):
            vad_inputs = VadParams.to_gradio_inputs(defaults=vad_params)

        with gr.Accordion(_("Diarization"), open=False):
            diarization_inputs = DiarizationParams.to_gradio_inputs(defaults=diarization_params,
                                                                    available_devices=self.whisper_inf.diarizer.available_device,
                                                                    device=self.whisper_inf.diarizer.device)

        dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])

        pipeline_inputs = [dd_model, dd_lang, cb_translate] + whisper_inputs + vad_inputs + diarization_inputs + uvr_inputs

        return (
            pipeline_inputs,
            dd_file_format,
            cb_timestamp
        )

    def launch(self):
        translation_params = self.default_params["translation"]
        deepl_params = translation_params["deepl"]
        nllb_params = translation_params["nllb"]
        uvr_params = self.default_params["bgm_separation"]

        with self.app:
            with self.i18n:
                with gr.Row():
                    with gr.Column():
                        gr.Markdown(MARKDOWN, elem_id="md_project")
                with gr.Tabs():
                    with gr.TabItem(_("File")):  # tab1
                        with gr.Column():
                            input_file = gr.Files(type="filepath", label=_("Upload File here"))
                            tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
                                                         info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
                                                              " Leave this field empty if you do not wish to use a local path.",
                                                         visible=self.args.colab,
                                                         value="")

                        pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()

                        with gr.Row():
                            btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label=_("Output"), scale=5)
                            files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3, interactive=False)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)

                        params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
                        btn_run.click(fn=self.whisper_inf.transcribe_file,
                                      inputs=params + pipeline_params,
                                      outputs=[tb_indicator, files_subtitles])
                        btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)

                    with gr.TabItem(_("Youtube")):  # tab2
                        with gr.Row():
                            tb_youtubelink = gr.Textbox(label=_("Youtube Link"))
                        with gr.Row(equal_height=True):
                            with gr.Column():
                                img_thumbnail = gr.Image(label=_("Youtube Thumbnail"))
                            with gr.Column():
                                tb_title = gr.Label(label=_("Youtube Title"))
                                tb_description = gr.Textbox(label=_("Youtube Description"), max_lines=15)

                        pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()

                        with gr.Row():
                            btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label=_("Output"), scale=5)
                            files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)

                        params = [tb_youtubelink, dd_file_format, cb_timestamp]

                        btn_run.click(fn=self.whisper_inf.transcribe_youtube,
                                      inputs=params + pipeline_params,
                                      outputs=[tb_indicator, files_subtitles])
                        tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
                                              outputs=[img_thumbnail, tb_title, tb_description])
                        btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)

                    with gr.TabItem(_("Mic")):  # tab3
                        with gr.Row():
                            mic_input = gr.Microphone(label=_("Record with Mic"), type="filepath", interactive=True)

                        pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()

                        with gr.Row():
                            btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
                        with gr.Row():
                            tb_indicator = gr.Textbox(label=_("Output"), scale=5)
                            files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
                            btn_openfolder = gr.Button('πŸ“‚', scale=1)

                        params = [mic_input, dd_file_format, cb_timestamp]

                        btn_run.click(fn=self.whisper_inf.transcribe_mic,
                                      inputs=params + pipeline_params,
                                      outputs=[tb_indicator, files_subtitles])
                        btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)

                    with gr.TabItem(_("T2T Translation")):  # tab 4
                        with gr.Row():
                            file_subs = gr.Files(type="filepath", label=_("Upload Subtitle Files to translate here"))

                        with gr.TabItem(_("DeepL API")):  # sub tab1
                            with gr.Row():
                                tb_api_key = gr.Textbox(label=_("Your Auth Key (API KEY)"),
                                                        value=deepl_params["api_key"])
                            with gr.Row():
                                dd_source_lang = gr.Dropdown(label=_("Source Language"),
                                                             value=AUTOMATIC_DETECTION if deepl_params["source_lang"] == AUTOMATIC_DETECTION.unwrap()
                                                             else deepl_params["source_lang"],
                                                             choices=list(self.deepl_api.available_source_langs.keys()))
                                dd_target_lang = gr.Dropdown(label=_("Target Language"),
                                                             value=deepl_params["target_lang"],
                                                             choices=list(self.deepl_api.available_target_langs.keys()))
                            with gr.Row():
                                cb_is_pro = gr.Checkbox(label=_("Pro User?"), value=deepl_params["is_pro"])
                            with gr.Row():
                                cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"],
                                                           label=_("Add a timestamp to the end of the filename"),
                                                           interactive=True)
                            with gr.Row():
                                btn_run = gr.Button(_("TRANSLATE SUBTITLE FILE"), variant="primary")
                            with gr.Row():
                                tb_indicator = gr.Textbox(label=_("Output"), scale=5)
                                files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
                                btn_openfolder = gr.Button('πŸ“‚', scale=1)

                        btn_run.click(fn=self.deepl_api.translate_deepl,
                                      inputs=[tb_api_key, file_subs, dd_source_lang, dd_target_lang,
                                              cb_is_pro, cb_timestamp],
                                      outputs=[tb_indicator, files_subtitles])

                        btn_openfolder.click(
                            fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
                            inputs=None,
                            outputs=None)

                        with gr.TabItem(_("NLLB")):  # sub tab2
                            with gr.Row():
                                dd_model_size = gr.Dropdown(label=_("Model"), value=nllb_params["model_size"],
                                                            choices=self.nllb_inf.available_models)
                                dd_source_lang = gr.Dropdown(label=_("Source Language"),
                                                             value=nllb_params["source_lang"],
                                                             choices=self.nllb_inf.available_source_langs)
                                dd_target_lang = gr.Dropdown(label=_("Target Language"),
                                                             value=nllb_params["target_lang"],
                                                             choices=self.nllb_inf.available_target_langs)
                            with gr.Row():
                                nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
                                                          precision=0)
                            with gr.Row():
                                cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"],
                                                           label=_("Add a timestamp to the end of the filename"),
                                                           interactive=True)
                            with gr.Row():
                                btn_run = gr.Button(_("TRANSLATE SUBTITLE FILE"), variant="primary")
                            with gr.Row():
                                tb_indicator = gr.Textbox(label=_("Output"), scale=5)
                                files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
                                btn_openfolder = gr.Button('πŸ“‚', scale=1)
                            with gr.Column():
                                md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")

                        btn_run.click(fn=self.nllb_inf.translate_file,
                                      inputs=[file_subs, dd_model_size, dd_source_lang, dd_target_lang,
                                              nb_max_length, cb_timestamp],
                                      outputs=[tb_indicator, files_subtitles])

                        btn_openfolder.click(
                            fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
                            inputs=None,
                            outputs=None)

                    with gr.TabItem(_("BGM Separation")):
                        files_audio = gr.Files(type="filepath", label=_("Upload Audio Files to separate background music"))
                        dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
                                                    choices=self.whisper_inf.music_separator.available_devices)
                        dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
                                                        choices=self.whisper_inf.music_separator.available_models)
                        nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"],
                                                        precision=0)
                        cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"),
                                                       value=True, visible=False)
                        btn_run = gr.Button(_("SEPARATE BACKGROUND MUSIC"), variant="primary")
                        with gr.Column():
                            with gr.Row():
                                ad_instrumental = gr.Audio(label=_("Instrumental"), scale=8)
                                btn_open_instrumental_folder = gr.Button('πŸ“‚', scale=1)
                            with gr.Row():
                                ad_vocals = gr.Audio(label=_("Vocals"), scale=8)
                                btn_open_vocals_folder = gr.Button('πŸ“‚', scale=1)

                        btn_run.click(fn=self.whisper_inf.music_separator.separate_files,
                                      inputs=[files_audio, dd_uvr_model_size, dd_uvr_device, nb_uvr_segment_size,
                                              cb_uvr_save_file],
                                      outputs=[ad_instrumental, ad_vocals])
                        btn_open_instrumental_folder.click(inputs=None,
                                                           outputs=None,
                                                           fn=lambda: self.open_folder(os.path.join(
                                                               self.args.output_dir, "UVR", "instrumental"
                                                           )))
                        btn_open_vocals_folder.click(inputs=None,
                                                     outputs=None,
                                                     fn=lambda: self.open_folder(os.path.join(
                                                         self.args.output_dir, "UVR", "vocals"
                                                     )))

        # Launch the app with optional gradio settings
        args = self.args
        self.app.queue(
            api_open=args.api_open
        ).launch(
            share=args.share,
            server_name=args.server_name,
            server_port=args.server_port,
            auth=(args.username, args.password) if args.username and args.password else None,
            root_path=args.root_path,
            inbrowser=args.inbrowser
        )

    @staticmethod
    def open_folder(folder_path: str):
        if os.path.exists(folder_path):
            os.system(f"start {folder_path}")
        else:
            os.makedirs(folder_path, exist_ok=True)
            print(f"The directory path {folder_path} has newly created.")

    @staticmethod
    def on_change_models(model_size: str):
        translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
        if model_size not in translatable_model:
            return gr.Checkbox(visible=False, value=False, interactive=False)
        else:
            return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)


parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default=WhisperImpl.FASTER_WHISPER.value,
                    choices=[item.value for item in WhisperImpl],
                    help='A type of the whisper implementation (Github repo name)')
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True,
                    help='Enable api or not in Gradio')
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True,
                    help='Whether to automatically start Gradio app or not')
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
                    help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
                    help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
                    default=INSANELY_FAST_WHISPER_MODELS_DIR,
                    help='Directory path of the insanely-fast-whisper model')
parser.add_argument('--diarization_model_dir', type=str, default=DIARIZATION_MODELS_DIR,
                    help='Directory path of the diarization model')
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
                    help='Directory path of the Facebook NLLB model')
parser.add_argument('--uvr_model_dir', type=str, default=UVR_MODELS_DIR,
                    help='Directory path of the UVR model')
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
_args = parser.parse_args()

if __name__ == "__main__":
    app = App(args=_args)
    app.launch()