Spaces:
Running
Running
File size: 22,087 Bytes
9cf2e86 a85ea1b 4e9280e 19c3dbd 9cf2e86 7d9eec3 711929b 4e9280e c1693be 2db409c ada247c c4e96e8 f79aae9 ada247c ccbfe76 a526073 63ab978 9cf2e86 44db26d 4e9280e 2db409c 2e08651 8126fce 2db409c 2d93272 184dab0 2d93272 f513345 2d93272 c1693be f7de005 19c3dbd 4df5628 19c3dbd 3ec9a9b 19c3dbd c14cab5 19c3dbd f7de005 31912ce f7de005 8a43431 c14cab5 f7de005 19c3dbd c14cab5 f7de005 c14cab5 3764662 f7de005 0da25b6 c14cab5 f7de005 0da25b6 f636e83 f7de005 806824b c14cab5 f7de005 0da25b6 c14cab5 6b0fe26 806824b c14cab5 6b0fe26 c14cab5 9cf2e86 c1693be 545761a c1693be 9cf2e86 4e9280e 767d188 4e9280e 9cf2e86 4e9280e 5a66e88 4df5628 c14cab5 4e9280e 9cf2e86 4e9280e 4df5628 4e9280e 661e83c 4e9280e 9cf2e86 4df5628 5a66e88 4e9280e 5a66e88 4e9280e 9cf2e86 4e9280e 4df5628 4e9280e 661e83c 4e9280e 9cf2e86 4df5628 9cf2e86 1d08db8 4e9280e d36cf56 4e9280e 1d08db8 4e9280e 1d08db8 4e9280e 4df5628 4e9280e 1d08db8 4e9280e 9cf2e86 f7de005 4e9280e f7de005 4e9280e f7de005 4e9280e f7de005 4e9280e f7de005 4e9280e f7de005 4e9280e f7de005 4e9280e f7de005 4e9280e f7de005 4e9280e f7de005 4e9280e 9cf2e86 4e9280e f7de005 4e9280e 9cf2e86 35245db 8a8890b 3fde2e0 31fd6fe 8c8001e 31fd6fe 3fde2e0 9cf2e86 6db9d8d 0da25b6 f7de005 f79aae9 18639e5 409297c d7f2438 0f16dda f79aae9 f7de005 7d9eec3 a85ea1b 7d9eec3 a85ea1b 7d9eec3 a85ea1b 7d9eec3 a85ea1b 7d9eec3 a85ea1b 711929b 7d9eec3 9cf2e86 3fde2e0 9cf2e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import argparse
import gradio as gr
from gradio_i18n import Translate, gettext as _
import yaml
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
UVR_MODELS_DIR, I18N_YAML_PATH)
from modules.utils.files_manager import load_yaml
from modules.whisper.whisper_factory import WhisperFactory
from modules.translation.nllb_inference import NLLBInference
from modules.ui.htmls import *
from modules.utils.cli_manager import str2bool
from modules.utils.youtube_manager import get_ytmetas
from modules.translation.deepl_api import DeepLAPI
from modules.whisper.data_classes import *
class App:
def __init__(self, args):
self.args = args
self.app = gr.Blocks(css=CSS, theme=self.args.theme, delete_cache=(60, 3600))
self.i18n = Translate(I18N_YAML_PATH)
self.whisper_inf = WhisperFactory.create_whisper_inference(
whisper_type=self.args.whisper_type,
whisper_model_dir=self.args.whisper_model_dir,
faster_whisper_model_dir=self.args.faster_whisper_model_dir,
insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
uvr_model_dir=self.args.uvr_model_dir,
output_dir=self.args.output_dir,
)
self.nllb_inf = NLLBInference(
model_dir=self.args.nllb_model_dir,
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.deepl_api = DeepLAPI(
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
print(f"Use \"{self.args.whisper_type}\" implementation\n"
f"Device \"{self.whisper_inf.device}\" is detected")
def create_pipeline_inputs(self):
whisper_params = self.default_params["whisper"]
vad_params = self.default_params["vad"]
diarization_params = self.default_params["diarization"]
uvr_params = self.default_params["bgm_separation"]
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
label=_("Model"))
dd_lang = gr.Dropdown(choices=self.whisper_inf.available_langs + [AUTOMATIC_DETECTION],
value=AUTOMATIC_DETECTION if whisper_params["lang"] == AUTOMATIC_DETECTION.unwrap()
else whisper_params["lang"], label=_("Language"))
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt", "LRC"], value=whisper_params["file_format"], label=_("File Format"))
with gr.Row():
cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label=_("Translate to English?"),
interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"],
label=_("Add a timestamp to the end of the filename"),
interactive=True)
with gr.Accordion(_("Advanced Parameters"), open=False):
whisper_inputs = WhisperParams.to_gradio_inputs(defaults=whisper_params, only_advanced=True,
whisper_type=self.args.whisper_type,
available_compute_types=self.whisper_inf.available_compute_types,
compute_type=self.whisper_inf.current_compute_type)
with gr.Accordion(_("Background Music Remover Filter"), open=False):
uvr_inputs = BGMSeparationParams.to_gradio_input(defaults=uvr_params,
available_models=self.whisper_inf.music_separator.available_models,
available_devices=self.whisper_inf.music_separator.available_devices,
device=self.whisper_inf.music_separator.device)
with gr.Accordion(_("Voice Detection Filter"), open=False):
vad_inputs = VadParams.to_gradio_inputs(defaults=vad_params)
with gr.Accordion(_("Diarization"), open=False):
diarization_inputs = DiarizationParams.to_gradio_inputs(defaults=diarization_params,
available_devices=self.whisper_inf.diarizer.available_device,
device=self.whisper_inf.diarizer.device)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
pipeline_inputs = [dd_model, dd_lang, cb_translate] + whisper_inputs + vad_inputs + diarization_inputs + uvr_inputs
return (
pipeline_inputs,
dd_file_format,
cb_timestamp
)
def launch(self):
translation_params = self.default_params["translation"]
deepl_params = translation_params["deepl"]
nllb_params = translation_params["nllb"]
uvr_params = self.default_params["bgm_separation"]
with self.app:
with self.i18n:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem(_("File")): # tab1
with gr.Column():
input_file = gr.Files(type="filepath", label=_("Upload File here"))
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
" Leave this field empty if you do not wish to use a local path.",
visible=self.args.colab,
value="")
pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()
with gr.Row():
btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3, interactive=False)
btn_openfolder = gr.Button('π', scale=1)
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_file,
inputs=params + pipeline_params,
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem(_("Youtube")): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label=_("Youtube Link"))
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label=_("Youtube Thumbnail"))
with gr.Column():
tb_title = gr.Label(label=_("Youtube Title"))
tb_description = gr.Textbox(label=_("Youtube Description"), max_lines=15)
pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()
with gr.Row():
btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
btn_openfolder = gr.Button('π', scale=1)
params = [tb_youtubelink, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
inputs=params + pipeline_params,
outputs=[tb_indicator, files_subtitles])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem(_("Mic")): # tab3
with gr.Row():
mic_input = gr.Microphone(label=_("Record with Mic"), type="filepath", interactive=True)
pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()
with gr.Row():
btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
btn_openfolder = gr.Button('π', scale=1)
params = [mic_input, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_mic,
inputs=params + pipeline_params,
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem(_("T2T Translation")): # tab 4
with gr.Row():
file_subs = gr.Files(type="filepath", label=_("Upload Subtitle Files to translate here"))
with gr.TabItem(_("DeepL API")): # sub tab1
with gr.Row():
tb_api_key = gr.Textbox(label=_("Your Auth Key (API KEY)"),
value=deepl_params["api_key"])
with gr.Row():
dd_source_lang = gr.Dropdown(label=_("Source Language"),
value=AUTOMATIC_DETECTION if deepl_params["source_lang"] == AUTOMATIC_DETECTION.unwrap()
else deepl_params["source_lang"],
choices=list(self.deepl_api.available_source_langs.keys()))
dd_target_lang = gr.Dropdown(label=_("Target Language"),
value=deepl_params["target_lang"],
choices=list(self.deepl_api.available_target_langs.keys()))
with gr.Row():
cb_is_pro = gr.Checkbox(label=_("Pro User?"), value=deepl_params["is_pro"])
with gr.Row():
cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"],
label=_("Add a timestamp to the end of the filename"),
interactive=True)
with gr.Row():
btn_run = gr.Button(_("TRANSLATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
btn_openfolder = gr.Button('π', scale=1)
btn_run.click(fn=self.deepl_api.translate_deepl,
inputs=[tb_api_key, file_subs, dd_source_lang, dd_target_lang,
cb_is_pro, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(
fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
inputs=None,
outputs=None)
with gr.TabItem(_("NLLB")): # sub tab2
with gr.Row():
dd_model_size = gr.Dropdown(label=_("Model"), value=nllb_params["model_size"],
choices=self.nllb_inf.available_models)
dd_source_lang = gr.Dropdown(label=_("Source Language"),
value=nllb_params["source_lang"],
choices=self.nllb_inf.available_source_langs)
dd_target_lang = gr.Dropdown(label=_("Target Language"),
value=nllb_params["target_lang"],
choices=self.nllb_inf.available_target_langs)
with gr.Row():
nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
precision=0)
with gr.Row():
cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"],
label=_("Add a timestamp to the end of the filename"),
interactive=True)
with gr.Row():
btn_run = gr.Button(_("TRANSLATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
btn_openfolder = gr.Button('π', scale=1)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=self.nllb_inf.translate_file,
inputs=[file_subs, dd_model_size, dd_source_lang, dd_target_lang,
nb_max_length, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(
fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
inputs=None,
outputs=None)
with gr.TabItem(_("BGM Separation")):
files_audio = gr.Files(type="filepath", label=_("Upload Audio Files to separate background music"))
dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
choices=self.whisper_inf.music_separator.available_devices)
dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
choices=self.whisper_inf.music_separator.available_models)
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"],
precision=0)
cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"),
value=True, visible=False)
btn_run = gr.Button(_("SEPARATE BACKGROUND MUSIC"), variant="primary")
with gr.Column():
with gr.Row():
ad_instrumental = gr.Audio(label=_("Instrumental"), scale=8)
btn_open_instrumental_folder = gr.Button('π', scale=1)
with gr.Row():
ad_vocals = gr.Audio(label=_("Vocals"), scale=8)
btn_open_vocals_folder = gr.Button('π', scale=1)
btn_run.click(fn=self.whisper_inf.music_separator.separate_files,
inputs=[files_audio, dd_uvr_model_size, dd_uvr_device, nb_uvr_segment_size,
cb_uvr_save_file],
outputs=[ad_instrumental, ad_vocals])
btn_open_instrumental_folder.click(inputs=None,
outputs=None,
fn=lambda: self.open_folder(os.path.join(
self.args.output_dir, "UVR", "instrumental"
)))
btn_open_vocals_folder.click(inputs=None,
outputs=None,
fn=lambda: self.open_folder(os.path.join(
self.args.output_dir, "UVR", "vocals"
)))
# Launch the app with optional gradio settings
args = self.args
self.app.queue(
api_open=args.api_open
).launch(
share=args.share,
server_name=args.server_name,
server_port=args.server_port,
auth=(args.username, args.password) if args.username and args.password else None,
root_path=args.root_path,
inbrowser=args.inbrowser
)
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
os.makedirs(folder_path, exist_ok=True)
print(f"The directory path {folder_path} has newly created.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
if model_size not in translatable_model:
return gr.Checkbox(visible=False, value=False, interactive=False)
else:
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default=WhisperImpl.FASTER_WHISPER.value,
choices=[item.value for item in WhisperImpl],
help='A type of the whisper implementation (Github repo name)')
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True,
help='Enable api or not in Gradio')
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True,
help='Whether to automatically start Gradio app or not')
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
default=INSANELY_FAST_WHISPER_MODELS_DIR,
help='Directory path of the insanely-fast-whisper model')
parser.add_argument('--diarization_model_dir', type=str, default=DIARIZATION_MODELS_DIR,
help='Directory path of the diarization model')
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
help='Directory path of the Facebook NLLB model')
parser.add_argument('--uvr_model_dir', type=str, default=UVR_MODELS_DIR,
help='Directory path of the UVR model')
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()
|