DesignEdit / src /demo /utils.py
jiayueru
Add app
7352753
import numpy as np
import gradio as gr
import cv2
from copy import deepcopy
import torch
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont
from sam.efficient_sam.build_efficient_sam import build_efficient_sam_vits
from src.utils.utils import resize_numpy_image
sam = build_efficient_sam_vits()
def show_point_or_box(image, global_points):
# for point
if len(global_points) == 1:
image = cv2.circle(image, global_points[0], 10, (0, 0, 255), -1)
# for box
if len(global_points) == 2:
p1 = global_points[0]
p2 = global_points[1]
image = cv2.rectangle(image,(int(p1[0]),int(p1[1])),(int(p2[0]),int(p2[1])),(0,0,255),2)
return image
def segment_with_points(
image,
original_image,
global_points,
global_point_label,
evt: gr.SelectData,
img_direction,
save_dir = "./tmp"
):
if original_image is None:
original_image = image
else:
image = original_image
if img_direction is None:
img_direction = original_image
x, y = evt.index[0], evt.index[1]
image_path = None
mask_path = None
if len(global_points) == 0:
global_points.append([x, y])
global_point_label.append(2)
image_with_point= show_point_or_box(image.copy(), global_points)
return image_with_point, original_image, None, global_points, global_point_label
elif len(global_points) == 1:
global_points.append([x, y])
global_point_label.append(3)
x1, y1 = global_points[0]
x2, y2 = global_points[1]
if x1 < x2 and y1 >= y2:
global_points[0][0] = x1
global_points[0][1] = y2
global_points[1][0] = x2
global_points[1][1] = y1
elif x1 >= x2 and y1 < y2:
global_points[0][0] = x2
global_points[0][1] = y1
global_points[1][0] = x1
global_points[1][1] = y2
elif x1 >= x2 and y1 >= y2:
global_points[0][0] = x2
global_points[0][1] = y2
global_points[1][0] = x1
global_points[1][1] = y1
image_with_point = show_point_or_box(image.copy(), global_points)
# data process
input_point = np.array(global_points)
input_label = np.array(global_point_label)
pts_sampled = torch.reshape(torch.tensor(input_point), [1, 1, -1, 2])
pts_labels = torch.reshape(torch.tensor(input_label), [1, 1, -1])
img_tensor = transforms.ToTensor()(image)
# sam
predicted_logits, predicted_iou = sam(
img_tensor[None, ...],
pts_sampled,
pts_labels,
)
mask = torch.ge(predicted_logits[0, 0, 0, :, :], 0).float().cpu().detach().numpy()
mask_image = (mask*255.).astype(np.uint8)
return image_with_point, original_image, mask_image, global_points, global_point_label
else:
global_points=[[x, y]]
global_point_label=[2]
image_with_point= show_point_or_box(image.copy(), global_points)
return image_with_point, original_image, None, global_points, global_point_label
def segment_with_points_paste(
image,
original_image,
global_points,
global_point_label,
image_b,
evt: gr.SelectData,
dx,
dy,
resize_scale
):
if original_image is None:
original_image = image
else:
image = original_image
x, y = evt.index[0], evt.index[1]
if len(global_points) == 0:
global_points.append([x, y])
global_point_label.append(2)
image_with_point= show_point_or_box(image.copy(), global_points)
return image_with_point, original_image, None, global_points, global_point_label, None
elif len(global_points) == 1:
global_points.append([x, y])
global_point_label.append(3)
x1, y1 = global_points[0]
x2, y2 = global_points[1]
if x1 < x2 and y1 >= y2:
global_points[0][0] = x1
global_points[0][1] = y2
global_points[1][0] = x2
global_points[1][1] = y1
elif x1 >= x2 and y1 < y2:
global_points[0][0] = x2
global_points[0][1] = y1
global_points[1][0] = x1
global_points[1][1] = y2
elif x1 >= x2 and y1 >= y2:
global_points[0][0] = x2
global_points[0][1] = y2
global_points[1][0] = x1
global_points[1][1] = y1
image_with_point = show_point_or_box(image.copy(), global_points)
# data process
input_point = np.array(global_points)
input_label = np.array(global_point_label)
pts_sampled = torch.reshape(torch.tensor(input_point), [1, 1, -1, 2])
pts_labels = torch.reshape(torch.tensor(input_label), [1, 1, -1])
img_tensor = transforms.ToTensor()(image)
# sam
predicted_logits, predicted_iou = sam(
img_tensor[None, ...],
pts_sampled,
pts_labels,
)
mask = torch.ge(predicted_logits[0, 0, 0, :, :], 0).float().cpu().detach().numpy()
mask_uint8 = (mask*255.).astype(np.uint8)
return image_with_point, original_image, paste_with_mask_and_offset(image, image_b, mask_uint8, dx, dy, resize_scale), global_points, global_point_label, mask_uint8
else:
global_points=[[x, y]]
global_point_label=[2]
image_with_point= show_point_or_box(image.copy(), global_points)
return image_with_point, original_image, None, global_points, global_point_label, None
def paste_with_mask_and_offset(image_a, image_b, mask, x_offset=0, y_offset=0, delta=1):
try:
numpy_mask = np.array(mask)
y_coords, x_coords = np.nonzero(numpy_mask)
x_min = x_coords.min()
x_max = x_coords.max()
y_min = y_coords.min()
y_max = y_coords.max()
target_center_x = int((x_min + x_max) / 2)
target_center_y = int((y_min + y_max) / 2)
image_a = Image.fromarray(image_a)
image_b = Image.fromarray(image_b)
mask = Image.fromarray(mask)
if image_a.size != mask.size:
mask = mask.resize(image_a.size)
cropped_image = Image.composite(image_a, Image.new('RGBA', image_a.size, (0, 0, 0, 0)), mask)
x_b = int(target_center_x * (image_b.width / cropped_image.width))
y_b = int(target_center_y * (image_b.height / cropped_image.height))
x_offset = x_offset - int((delta - 1) * x_b)
y_offset = y_offset - int((delta - 1) * y_b)
cropped_image = cropped_image.resize(image_b.size)
new_size = (int(cropped_image.width * delta), int(cropped_image.height * delta))
cropped_image = cropped_image.resize(new_size)
image_b.putalpha(128)
result_image = Image.new('RGBA', image_b.size, (0, 0, 0, 0))
result_image.paste(image_b, (0, 0))
result_image.paste(cropped_image, (x_offset, y_offset), mask=cropped_image)
return result_image
except:
return None
def upload_image_move(img, original_image):
if original_image is not None:
return original_image
else:
return img
def fun_clear(*args):
result = []
for arg in args:
if isinstance(arg, list):
result.append([])
else:
result.append(None)
return tuple(result)
def clear_points(img):
image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = image.copy()
return [], masked_img
def get_point(img, sel_pix, evt: gr.SelectData):
sel_pix.append(evt.index)
points = []
for idx, point in enumerate(sel_pix):
if idx % 2 == 0:
cv2.circle(img, tuple(point), 10, (0, 0, 255), -1)
else:
cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
points.append(tuple(point))
if len(points) == 2:
cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 4, tipLength=0.5)
points = []
return img if isinstance(img, np.ndarray) else np.array(img)
def calculate_translation_percentage(ori_shape, selected_points):
dx = selected_points[1][0] - selected_points[0][0]
dy = selected_points[1][1] - selected_points[0][1]
dx_percentage = dx / ori_shape[1]
dy_percentage = dy / ori_shape[0]
return dx_percentage, dy_percentage
def get_point_move(original_image, img, sel_pix, evt: gr.SelectData):
if original_image is not None:
img = original_image.copy()
else:
original_image = img.copy()
if len(sel_pix)<2:
sel_pix.append(evt.index)
else:
sel_pix = [evt.index]
points = []
dx, dy = 0, 0
for idx, point in enumerate(sel_pix):
if idx % 2 == 0:
cv2.circle(img, tuple(point), 10, (0, 0, 255), -1)
else:
cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
points.append(tuple(point))
if len(points) == 2:
cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 4, tipLength=0.5)
ori_shape = original_image.shape
dx, dy = calculate_translation_percentage(original_image.shape, sel_pix)
points = []
img = np.array(img)
return img, original_image, sel_pix, dx, dy
def store_img(img):
image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = image.copy()
return image, masked_img, mask
def store_img_move(img, mask=None):
if mask is not None:
image = img["image"]
return image, None, mask
image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = image.copy()
return image, masked_img, (mask*255.).astype(np.uint8)
def mask_image(image, mask, color=[255,0,0], alpha=0.5, max_resolution=None):
""" Overlay mask on image for visualization purpose.
Args:
image (H, W, 3) or (H, W): input image
mask (H, W): mask to be overlaid
color: the color of overlaid mask
alpha: the transparency of the mask
"""
if max_resolution is not None:
image, _ = resize_numpy_image(image, max_resolution*max_resolution)
mask = cv2.resize(mask, (image.shape[1], image.shape[0]),interpolation=cv2.INTER_NEAREST)
out = deepcopy(image)
img = deepcopy(image)
img[mask == 1] = color
out = cv2.addWeighted(img, alpha, out, 1-alpha, 0, out)
contours = cv2.findContours(np.uint8(deepcopy(mask)), cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)[-2:]
return out