Spaces:
Running
Running
jonathanjordan21
commited on
Create custom_llm.py
Browse files- custom_llm.py +71 -0
custom_llm.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Mapping, Optional
|
2 |
+
from langchain_core.language_models.llms import LLM
|
3 |
+
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
4 |
+
|
5 |
+
from typing import Literal
|
6 |
+
|
7 |
+
import requests
|
8 |
+
|
9 |
+
|
10 |
+
class CustomLLM(LLM):
|
11 |
+
repo_id : str
|
12 |
+
api_token : str
|
13 |
+
model_type: Literal["text2text-generation", "text-generation"]
|
14 |
+
max_new_tokens: int = None
|
15 |
+
temperature: float = 0.001
|
16 |
+
timeout: float = None
|
17 |
+
top_p: float = None
|
18 |
+
top_k : int = None
|
19 |
+
repetition_penalty : float = None
|
20 |
+
stop : List[str] = []
|
21 |
+
|
22 |
+
|
23 |
+
@property
|
24 |
+
def _llm_type(self) -> str:
|
25 |
+
return "custom"
|
26 |
+
|
27 |
+
def _call(
|
28 |
+
self,
|
29 |
+
prompt: str,
|
30 |
+
stop: Optional[List[str]] = None,
|
31 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
32 |
+
**kwargs: Any,
|
33 |
+
) -> str:
|
34 |
+
|
35 |
+
headers = {"Authorization": f"Bearer {self.api_token}"}
|
36 |
+
API_URL = f"https://api-inference.huggingface.co/models/{self.repo_id}"
|
37 |
+
|
38 |
+
parameters_dict = {
|
39 |
+
'max_new_tokens': self.max_new_tokens,
|
40 |
+
'temperature': self.temperature,
|
41 |
+
'timeout': self.timeout,
|
42 |
+
'top_p': self.top_p,
|
43 |
+
'top_k': self.top_k,
|
44 |
+
'repetition_penalty': self.repetition_penalty,
|
45 |
+
'stop':self.stop
|
46 |
+
}
|
47 |
+
|
48 |
+
if self.model_type == 'text-generation':
|
49 |
+
parameters_dict["return_full_text"]=False
|
50 |
+
|
51 |
+
data = {"inputs": prompt, "parameters":parameters_dict, "options":{"wait_for_model":True}}
|
52 |
+
data = requests.post(API_URL, headers=headers, json=data).json()
|
53 |
+
try:
|
54 |
+
return data[0]['generated_text']
|
55 |
+
except:
|
56 |
+
return data
|
57 |
+
|
58 |
+
@property
|
59 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
60 |
+
"""Get the identifying parameters."""
|
61 |
+
return {
|
62 |
+
'repo_id': self.repo_id,
|
63 |
+
'model_type':self.model_type,
|
64 |
+
'stop_sequences':self.stop,
|
65 |
+
'max_new_tokens': self.max_new_tokens,
|
66 |
+
'temperature': self.temperature,
|
67 |
+
'timeout': self.timeout,
|
68 |
+
'top_p': self.top_p,
|
69 |
+
'top_k': self.top_k,
|
70 |
+
'repetition_penalty': self.repetition_penalty
|
71 |
+
}
|