Spaces:
Running
on
Zero
Running
on
Zero
JeffreyXiang
commited on
Commit
·
a898014
1
Parent(s):
2e7f188
fix
Browse files
app.py
CHANGED
@@ -17,9 +17,10 @@ from trellis.utils import render_utils, postprocessing_utils
|
|
17 |
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
20 |
|
21 |
|
22 |
-
def preprocess_image(image: Image.Image) -> Tuple[
|
23 |
"""
|
24 |
Preprocess the input image.
|
25 |
|
@@ -27,14 +28,16 @@ def preprocess_image(image: Image.Image) -> Tuple[dict, Image.Image]:
|
|
27 |
image (Image.Image): The input image.
|
28 |
|
29 |
Returns:
|
30 |
-
|
31 |
Image.Image: The preprocessed image.
|
32 |
"""
|
|
|
33 |
processed_image = pipeline.preprocess_image(image)
|
34 |
-
|
|
|
35 |
|
36 |
|
37 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult,
|
38 |
return {
|
39 |
'gaussian': {
|
40 |
**gs.init_params,
|
@@ -48,7 +51,7 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult, model_id: str) -> dict:
|
|
48 |
'vertices': mesh.vertices.cpu().numpy(),
|
49 |
'faces': mesh.faces.cpu().numpy(),
|
50 |
},
|
51 |
-
'
|
52 |
}
|
53 |
|
54 |
|
@@ -72,16 +75,16 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
72 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
73 |
)
|
74 |
|
75 |
-
return gs, mesh, state['
|
76 |
|
77 |
|
78 |
@spaces.GPU
|
79 |
-
def image_to_3d(
|
80 |
"""
|
81 |
Convert an image to a 3D model.
|
82 |
|
83 |
Args:
|
84 |
-
|
85 |
seed (int): The random seed.
|
86 |
randomize_seed (bool): Whether to randomize the seed.
|
87 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
@@ -96,7 +99,7 @@ def image_to_3d(image: dict, seed: int, randomize_seed: bool, ss_guidance_streng
|
|
96 |
if randomize_seed:
|
97 |
seed = np.random.randint(0, MAX_SEED)
|
98 |
outputs = pipeline.run(
|
99 |
-
Image.
|
100 |
seed=seed,
|
101 |
formats=["gaussian", "mesh"],
|
102 |
preprocess_image=False,
|
@@ -112,11 +115,11 @@ def image_to_3d(image: dict, seed: int, randomize_seed: bool, ss_guidance_streng
|
|
112 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
113 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
114 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
115 |
-
|
116 |
-
video_path = f"/
|
117 |
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
118 |
imageio.mimsave(video_path, video, fps=15)
|
119 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0],
|
120 |
return state, video_path
|
121 |
|
122 |
|
@@ -133,9 +136,9 @@ def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[s
|
|
133 |
Returns:
|
134 |
str: The path to the extracted GLB file.
|
135 |
"""
|
136 |
-
gs, mesh,
|
137 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
138 |
-
glb_path = f"/
|
139 |
glb.export(glb_path)
|
140 |
return glb_path, glb_path
|
141 |
|
@@ -184,7 +187,7 @@ with gr.Blocks() as demo:
|
|
184 |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
185 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
186 |
|
187 |
-
|
188 |
output_buf = gr.State()
|
189 |
|
190 |
# Example images at the bottom of the page
|
@@ -196,7 +199,7 @@ with gr.Blocks() as demo:
|
|
196 |
],
|
197 |
inputs=[image_prompt],
|
198 |
fn=preprocess_image,
|
199 |
-
outputs=[
|
200 |
run_on_click=True,
|
201 |
examples_per_page=64,
|
202 |
)
|
@@ -205,12 +208,16 @@ with gr.Blocks() as demo:
|
|
205 |
image_prompt.upload(
|
206 |
preprocess_image,
|
207 |
inputs=[image_prompt],
|
208 |
-
outputs=[
|
|
|
|
|
|
|
|
|
209 |
)
|
210 |
|
211 |
generate_btn.click(
|
212 |
image_to_3d,
|
213 |
-
inputs=[
|
214 |
outputs=[output_buf, video_output],
|
215 |
).then(
|
216 |
activate_button,
|
|
|
17 |
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
+
TMP_DIR = "/tmp/Trellis-demo"
|
21 |
|
22 |
|
23 |
+
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
24 |
"""
|
25 |
Preprocess the input image.
|
26 |
|
|
|
28 |
image (Image.Image): The input image.
|
29 |
|
30 |
Returns:
|
31 |
+
str: uuid of the trial.
|
32 |
Image.Image: The preprocessed image.
|
33 |
"""
|
34 |
+
trial_id = str(uuid.uuid4())
|
35 |
processed_image = pipeline.preprocess_image(image)
|
36 |
+
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
|
37 |
+
return trial_id, processed_image
|
38 |
|
39 |
|
40 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
41 |
return {
|
42 |
'gaussian': {
|
43 |
**gs.init_params,
|
|
|
51 |
'vertices': mesh.vertices.cpu().numpy(),
|
52 |
'faces': mesh.faces.cpu().numpy(),
|
53 |
},
|
54 |
+
'trial_id': trial_id,
|
55 |
}
|
56 |
|
57 |
|
|
|
75 |
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
76 |
)
|
77 |
|
78 |
+
return gs, mesh, state['trial_id']
|
79 |
|
80 |
|
81 |
@spaces.GPU
|
82 |
+
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
|
83 |
"""
|
84 |
Convert an image to a 3D model.
|
85 |
|
86 |
Args:
|
87 |
+
trial_id (str): The uuid of the trial.
|
88 |
seed (int): The random seed.
|
89 |
randomize_seed (bool): Whether to randomize the seed.
|
90 |
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
|
|
99 |
if randomize_seed:
|
100 |
seed = np.random.randint(0, MAX_SEED)
|
101 |
outputs = pipeline.run(
|
102 |
+
Image.open(f"{TMP_DIR}/{trial_id}.png"),
|
103 |
seed=seed,
|
104 |
formats=["gaussian", "mesh"],
|
105 |
preprocess_image=False,
|
|
|
115 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
116 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
117 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
118 |
+
trial_id = uuid.uuid4()
|
119 |
+
video_path = f"{TMP_DIR}/{trial_id}.mp4"
|
120 |
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
121 |
imageio.mimsave(video_path, video, fps=15)
|
122 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
123 |
return state, video_path
|
124 |
|
125 |
|
|
|
136 |
Returns:
|
137 |
str: The path to the extracted GLB file.
|
138 |
"""
|
139 |
+
gs, mesh, trial_id = unpack_state(state)
|
140 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
141 |
+
glb_path = f"{TMP_DIR}/{trial_id}.glb"
|
142 |
glb.export(glb_path)
|
143 |
return glb_path, glb_path
|
144 |
|
|
|
187 |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
188 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
189 |
|
190 |
+
trial_id = gr.Textbox(visible=False)
|
191 |
output_buf = gr.State()
|
192 |
|
193 |
# Example images at the bottom of the page
|
|
|
199 |
],
|
200 |
inputs=[image_prompt],
|
201 |
fn=preprocess_image,
|
202 |
+
outputs=[trial_id, image_prompt],
|
203 |
run_on_click=True,
|
204 |
examples_per_page=64,
|
205 |
)
|
|
|
208 |
image_prompt.upload(
|
209 |
preprocess_image,
|
210 |
inputs=[image_prompt],
|
211 |
+
outputs=[trial_id, image_prompt],
|
212 |
+
)
|
213 |
+
image_prompt.clear(
|
214 |
+
lambda: '',
|
215 |
+
outputs=[trial_id],
|
216 |
)
|
217 |
|
218 |
generate_btn.click(
|
219 |
image_to_3d,
|
220 |
+
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
221 |
outputs=[output_buf, video_output],
|
222 |
).then(
|
223 |
activate_button,
|