Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
model_names = [ | |
"apple/mobilevit-small", | |
"facebook/deit-base-patch16-224", | |
"facebook/convnext-base-224", | |
"google/vit-base-patch16-224", | |
"google/mobilenet_v2_1.4_224", | |
"microsoft/resnet-50", | |
"microsoft/swin-base-patch4-window7-224", | |
"microsoft/beit-base-patch16-224", | |
"nvidia/mit-b0", | |
"shi-labs/nat-base-in1k-224", | |
"shi-labs/dinat-base-in1k-224", | |
] | |
def process(image_file, top_k): | |
labels = [] | |
for m in model_names: | |
p = pipeline("image-classification", model=m) | |
pred = p(image_file) | |
labels.append({x["label"]: x["score"] for x in pred[:top_k]}) | |
return labels | |
# Inputs | |
image = gr.Image(type="filepath", label="Upload an image") | |
top_k = gr.Slider(minimum=1, maximum=5, step=1, value=5, label="Top k classes") | |
# Output | |
labels = [gr.Label(label=m) for m in model_names] | |
description = "This Space lets you quickly compare the most popular image classifiers available on the hub, including the recent NAT and DINAT models. All of them have been fine-tuned on the ImageNet-1k dataset. Anecdotally, the three sample images have been generated with a Stable Diffusion model :)" | |
iface = gr.Interface( | |
theme="huggingface", | |
description=description, | |
layout="horizontal", | |
fn=process, | |
inputs=[image, top_k], | |
outputs=labels, | |
examples=[ | |
["bike.jpg", 5], | |
["car.jpg", 5], | |
["food.jpg", 5], | |
], | |
allow_flagging="never", | |
) | |
iface.launch() | |