Spaces:
Runtime error
Runtime error
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from collections import defaultdict | |
from typing import Callable, Dict, Union | |
import paddle | |
import paddle.nn as nn | |
from .modeling_utils import _get_model_file, load_dict | |
from .models.cross_attention import LoRACrossAttnProcessor | |
from .utils import HF_CACHE, PPDIFFUSERS_CACHE, logging | |
logger = logging.get_logger(__name__) | |
LORA_WEIGHT_NAME = "paddle_lora_weights.pdparams" | |
class AttnProcsLayers(nn.Layer): | |
def __init__(self, state_dict: Dict[str, paddle.Tensor]): | |
super().__init__() | |
self.layers = nn.LayerList(state_dict.values()) | |
self.mapping = {k: v for k, v in enumerate(state_dict.keys())} | |
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} | |
# we add a hook to state_dict() and load_state_dict() so that the | |
# naming fits with `unet.attn_processors` | |
def map_to(state_dict, *args, **kwargs): | |
new_state_dict = {} | |
for key, value in state_dict.items(): | |
num = int(key.split(".")[1]) # 0 is always "layers" | |
new_key = key.replace(f"layers.{num}", self.mapping[num]) | |
new_state_dict[new_key] = value | |
return new_state_dict | |
def map_from(module, state_dict, *args, **kwargs): | |
all_keys = list(state_dict.keys()) | |
for key in all_keys: | |
replace_key = key.split(".processor")[0] + ".processor" | |
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") | |
state_dict[new_key] = state_dict[key] | |
del state_dict[key] | |
self.register_state_dict_hook(map_to) | |
self.register_load_state_dict_pre_hook(map_from, with_module=True) | |
class UNet2DConditionLoadersMixin: | |
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, paddle.Tensor]], **kwargs): | |
r""" | |
Load pretrained attention processor layers into `UNet2DConditionModel`. Attention processor layers have to be | |
defined in | |
[cross_attention.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py) | |
and be a `paddle.nn.Layer` class. | |
<Tip warning={true}> | |
This function is experimental and might change in the future | |
</Tip> | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. | |
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., | |
`./my_model_directory/`. | |
- A [paddle state | |
dict]. | |
from_hf_hub (bool, optional): whether to load from Huggingface Hub. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
subfolder (`str`, *optional*, defaults to `None`): | |
In case the relevant files are located inside a subfolder of the model repo (either remote in | |
huggingface.co or downloaded locally), you can specify the folder name here. | |
""" | |
from_hf_hub = kwargs.pop("from_hf_hub", False) | |
if from_hf_hub: | |
cache_dir = kwargs.pop("cache_dir", HF_CACHE) | |
else: | |
cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE) | |
subfolder = kwargs.pop("subfolder", None) | |
weight_name = kwargs.pop("weight_name", LORA_WEIGHT_NAME) | |
if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
model_file = _get_model_file( | |
pretrained_model_name_or_path_or_dict, | |
weights_name=weight_name, | |
cache_dir=cache_dir, | |
subfolder=subfolder, | |
from_hf_hub=from_hf_hub, | |
) | |
state_dict = load_dict(model_file, map_location="cpu") | |
else: | |
state_dict = pretrained_model_name_or_path_or_dict | |
# fill attn processors | |
attn_processors = {} | |
is_lora = all("lora" in k for k in state_dict.keys()) | |
if is_lora: | |
lora_grouped_dict = defaultdict(dict) | |
for key, value in state_dict.items(): | |
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) | |
lora_grouped_dict[attn_processor_key][sub_key] = value | |
for key, value_dict in lora_grouped_dict.items(): | |
rank = value_dict["to_k_lora.down.weight"].shape[1] # 0 -> 1, torch vs paddle nn.Linear | |
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[0] # 1 -> 0, torch vs paddle nn.Linear | |
hidden_size = value_dict["to_k_lora.up.weight"].shape[1] # 0 -> 1, torch vs paddle nn.Linear | |
attn_processors[key] = LoRACrossAttnProcessor( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank | |
) | |
attn_processors[key].load_dict(value_dict) | |
else: | |
raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.") | |
# set correct dtype & device | |
attn_processors = {k: v.to(dtype=self.dtype) for k, v in attn_processors.items()} | |
# set layers | |
self.set_attn_processor(attn_processors) | |
def save_attn_procs( | |
self, | |
save_directory: Union[str, os.PathLike], | |
is_main_process: bool = True, | |
weights_name: str = LORA_WEIGHT_NAME, | |
save_function: Callable = None, | |
): | |
r""" | |
Save an attention procesor to a directory, so that it can be re-loaded using the | |
`[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`]` method. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to which to save. Will be created if it doesn't exist. | |
is_main_process (`bool`, *optional*, defaults to `True`): | |
Whether the process calling this is the main process or not. Useful when in distributed training like | |
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on | |
the main process to avoid race conditions. | |
weights_name (`str`, *optional*, defaults to `LORA_WEIGHT_NAME`): | |
The name of weights. | |
save_function (`Callable`): | |
The function to use to save the state dictionary. Useful on distributed training like TPUs when one | |
need to replace `torch.save` by another method. Can be configured with the environment variable | |
`DIFFUSERS_SAVE_MODE`. | |
""" | |
if os.path.isfile(save_directory): | |
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
return | |
if save_function is None: | |
save_function = paddle.save | |
os.makedirs(save_directory, exist_ok=True) | |
model_to_save = AttnProcsLayers(self.attn_processors) | |
# Save the model | |
state_dict = model_to_save.state_dict() | |
# Clean the folder from a previous save | |
for filename in os.listdir(save_directory): | |
full_filename = os.path.join(save_directory, filename) | |
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process | |
# in distributed settings to avoid race conditions. | |
weights_no_suffix = weights_name.replace(".pdparams", "") | |
if filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and is_main_process: | |
os.remove(full_filename) | |
# Save the model | |
save_function(state_dict, os.path.join(save_directory, weights_name)) | |
logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}") | |