lora_test2 / ppdiffusers /training_utils.py
junnyu's picture
Upload with huggingface_hub
8c1c4dc
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import copy
import os
import random
import numpy as np
import paddle
from .utils import logging
logger = logging.get_logger(__name__)
def enable_full_determinism(seed: int):
"""
Helper function for reproducible behavior during distributed training.
"""
# set seed first
set_seed(seed)
# Enable Paddle deterministic mode. This potentially requires either the environment
# variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
# depending on the CUDA version, so we set them both here
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
os.environ["FLAGS_cudnn_deterministic"] = "True"
os.environ["FLAGS_benchmark"] = "True"
def set_seed(seed: int = None):
"""
Args:
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `paddle`.
seed (`int`): The seed to set.
"""
if seed is not None:
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
class EMAModel:
"""
Exponential Moving Average of models weights
"""
def __init__(self, model, update_after_step=0, inv_gamma=1.0, power=2 / 3, min_value=0.0, max_value=0.9999):
"""
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
at 215.4k steps).
Args:
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power (float): Exponential factor of EMA warmup. Default: 2/3.
min_value (float): The minimum EMA decay rate. Default: 0.
"""
self.averaged_model = copy.deepcopy(model)
self.averaged_model.eval()
for params in self.averaged_model.parameters():
params.stop_gradient = True
self.update_after_step = update_after_step
self.inv_gamma = inv_gamma
self.power = power
self.min_value = min_value
self.max_value = max_value
self.decay = 0.0
self.optimization_step = 0
def get_decay(self, optimization_step):
"""
Compute the decay factor for the exponential moving average.
"""
step = max(0, optimization_step - self.update_after_step - 1)
value = 1 - (1 + step / self.inv_gamma) ** -self.power
if step <= 0:
return 0.0
return max(self.min_value, min(value, self.max_value))
@paddle.no_grad()
def step(self, new_model):
ema_state_dict = {}
ema_params = self.averaged_model.state_dict()
self.decay = self.get_decay(self.optimization_step)
for key, param in new_model.named_parameters():
if isinstance(param, dict):
continue
try:
ema_param = ema_params[key]
except KeyError:
ema_param = param.cast("float32").clone() if param.ndim == 1 else copy.deepcopy(param)
ema_params[key] = ema_param
if param.stop_gradient:
ema_params[key].copy_(param.cast(ema_param.dtype), True)
ema_param = ema_params[key]
else:
ema_param.scale_(self.decay)
ema_param.add_(param.cast(ema_param.dtype) * (1 - self.decay))
ema_state_dict[key] = ema_param
for key, param in new_model.named_buffers():
ema_state_dict[key] = param
self.averaged_model.load_dict(ema_state_dict)
self.optimization_step += 1
@contextlib.contextmanager
def main_process_first(desc="work"):
if paddle.distributed.get_world_size() > 1:
rank = paddle.distributed.get_rank()
is_main_process = rank == 0
main_process_desc = "main local process"
try:
if not is_main_process:
# tell all replicas to wait
logger.debug(f"{rank}: waiting for the {main_process_desc} to perform {desc}")
paddle.distributed.barrier()
yield
finally:
if is_main_process:
# the wait is over
logger.debug(f"{rank}: {main_process_desc} completed {desc}, releasing all replicas")
paddle.distributed.barrier()
else:
yield