Spaces:
Runtime error
Runtime error
xj
commited on
Commit
·
4c9e450
1
Parent(s):
8f95475
[bug] 加快编译速度
Browse files- app.py +2 -4
- requirements.txt +6 -6
- utils.py +53 -53
app.py
CHANGED
@@ -22,8 +22,6 @@ from models import SynthesizerTrn
|
|
22 |
from text import text_to_sequence
|
23 |
import torch
|
24 |
from torch import no_grad, LongTensor
|
25 |
-
import webbrowser
|
26 |
-
import gradio.processing_utils as gr_processing_utils
|
27 |
from gradio_client import utils as client_utils
|
28 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
29 |
|
@@ -45,10 +43,10 @@ def get_text(text, hps):
|
|
45 |
def vits(text, language, speaker_id, noise_scale, noise_scale_w, length_scale):
|
46 |
start = time.perf_counter()
|
47 |
if not len(text):
|
48 |
-
return
|
49 |
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
|
50 |
if len(text) > 200 and limitation:
|
51 |
-
return
|
52 |
if language == "中文":
|
53 |
text = f"[ZH]{text}[ZH]"
|
54 |
elif language == "日文":
|
|
|
22 |
from text import text_to_sequence
|
23 |
import torch
|
24 |
from torch import no_grad, LongTensor
|
|
|
|
|
25 |
from gradio_client import utils as client_utils
|
26 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
27 |
|
|
|
43 |
def vits(text, language, speaker_id, noise_scale, noise_scale_w, length_scale):
|
44 |
start = time.perf_counter()
|
45 |
if not len(text):
|
46 |
+
return None
|
47 |
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
|
48 |
if len(text) > 200 and limitation:
|
49 |
+
return None
|
50 |
if language == "中文":
|
51 |
text = f"[ZH]{text}[ZH]"
|
52 |
elif language == "日文":
|
requirements.txt
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
Cython
|
2 |
librosa
|
3 |
-
matplotlib
|
4 |
numpy
|
5 |
-
phonemizer
|
6 |
-
scipy
|
7 |
-
tensorboard
|
8 |
torch
|
9 |
-
torchvision
|
10 |
Unidecode
|
11 |
pyopenjtalk
|
12 |
ffmpeg
|
|
|
1 |
+
#Cython
|
2 |
librosa
|
3 |
+
#matplotlib
|
4 |
numpy
|
5 |
+
#phonemizer
|
6 |
+
#scipy
|
7 |
+
#tensorboard
|
8 |
torch
|
9 |
+
#torchvision
|
10 |
Unidecode
|
11 |
pyopenjtalk
|
12 |
ffmpeg
|
utils.py
CHANGED
@@ -42,59 +42,59 @@ def load_checkpoint(checkpoint_path, model, optimizer=None):
|
|
42 |
return model, optimizer, learning_rate, iteration
|
43 |
|
44 |
|
45 |
-
def plot_spectrogram_to_numpy(spectrogram):
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
def plot_alignment_to_numpy(alignment, info=None):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
|
100 |
def load_audio_to_torch(full_path, target_sampling_rate):
|
|
|
42 |
return model, optimizer, learning_rate, iteration
|
43 |
|
44 |
|
45 |
+
# def plot_spectrogram_to_numpy(spectrogram):
|
46 |
+
# global MATPLOTLIB_FLAG
|
47 |
+
# if not MATPLOTLIB_FLAG:
|
48 |
+
# import matplotlib
|
49 |
+
# matplotlib.use("Agg")
|
50 |
+
# MATPLOTLIB_FLAG = True
|
51 |
+
# mpl_logger = logging.getLogger('matplotlib')
|
52 |
+
# mpl_logger.setLevel(logging.WARNING)
|
53 |
+
# import matplotlib.pylab as plt
|
54 |
+
# import numpy as np
|
55 |
+
|
56 |
+
# fig, ax = plt.subplots(figsize=(10,2))
|
57 |
+
# im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
58 |
+
# interpolation='none')
|
59 |
+
# plt.colorbar(im, ax=ax)
|
60 |
+
# plt.xlabel("Frames")
|
61 |
+
# plt.ylabel("Channels")
|
62 |
+
# plt.tight_layout()
|
63 |
+
|
64 |
+
# fig.canvas.draw()
|
65 |
+
# data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
66 |
+
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
67 |
+
# plt.close()
|
68 |
+
# return data
|
69 |
+
|
70 |
+
|
71 |
+
# def plot_alignment_to_numpy(alignment, info=None):
|
72 |
+
# global MATPLOTLIB_FLAG
|
73 |
+
# if not MATPLOTLIB_FLAG:
|
74 |
+
# import matplotlib
|
75 |
+
# matplotlib.use("Agg")
|
76 |
+
# MATPLOTLIB_FLAG = True
|
77 |
+
# mpl_logger = logging.getLogger('matplotlib')
|
78 |
+
# mpl_logger.setLevel(logging.WARNING)
|
79 |
+
# import matplotlib.pylab as plt
|
80 |
+
# import numpy as np
|
81 |
+
|
82 |
+
# fig, ax = plt.subplots(figsize=(6, 4))
|
83 |
+
# im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
84 |
+
# interpolation='none')
|
85 |
+
# fig.colorbar(im, ax=ax)
|
86 |
+
# xlabel = 'Decoder timestep'
|
87 |
+
# if info is not None:
|
88 |
+
# xlabel += '\n\n' + info
|
89 |
+
# plt.xlabel(xlabel)
|
90 |
+
# plt.ylabel('Encoder timestep')
|
91 |
+
# plt.tight_layout()
|
92 |
+
|
93 |
+
# fig.canvas.draw()
|
94 |
+
# data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
95 |
+
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
96 |
+
# plt.close()
|
97 |
+
# return data
|
98 |
|
99 |
|
100 |
def load_audio_to_torch(full_path, target_sampling_rate):
|