Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
from utils.utils import instantiate_from_config | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
""" | |
Create a linear module. | |
""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def nonlinearity(type="silu"): | |
if type == "silu": | |
return nn.SiLU() | |
elif type == "leaky_relu": | |
return nn.LeakyReLU() | |
class GroupNormSpecific(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type(x.dtype) | |
def normalization(channels, num_groups=32): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:param num_groups: number of groupseg. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNormSpecific(num_groups, channels) | |
class HybridConditioner(nn.Module): | |
def __init__(self, c_concat_config, c_crossattn_config): | |
super().__init__() | |
self.concat_conditioner = instantiate_from_config(c_concat_config) | |
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) | |
def forward(self, c_concat, c_crossattn): | |
c_concat = self.concat_conditioner(c_concat) | |
c_crossattn = self.crossattn_conditioner(c_crossattn) | |
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]} | |