Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
from contextlib import contextmanager | |
import torch | |
import numpy as np | |
from einops import rearrange | |
import torch.nn.functional as F | |
import torch.distributed as dist | |
import pytorch_lightning as pl | |
from pytorch_lightning.utilities import rank_zero_only | |
from taming.modules.vqvae.quantize import VectorQuantizer as VectorQuantizer | |
from core.modules.networks.ae_modules import Encoder, Decoder | |
from core.distributions import DiagonalGaussianDistribution | |
from utils.utils import instantiate_from_config | |
from utils.save_video import tensor2videogrids | |
from core.common import shape_to_str, gather_data | |
class AutoencoderKL(pl.LightningModule): | |
def __init__( | |
self, | |
ddconfig, | |
lossconfig, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
monitor=None, | |
test=False, | |
logdir=None, | |
input_dim=4, | |
test_args=None, | |
): | |
super().__init__() | |
self.image_key = image_key | |
self.encoder = Encoder(**ddconfig) | |
self.decoder = Decoder(**ddconfig) | |
self.loss = instantiate_from_config(lossconfig) | |
assert ddconfig["double_z"] | |
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
self.embed_dim = embed_dim | |
self.input_dim = input_dim | |
self.test = test | |
self.test_args = test_args | |
self.logdir = logdir | |
if colorize_nlabels is not None: | |
assert type(colorize_nlabels) == int | |
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
if monitor is not None: | |
self.monitor = monitor | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
if self.test: | |
self.init_test() | |
def init_test( | |
self, | |
): | |
self.test = True | |
save_dir = os.path.join(self.logdir, "test") | |
if "ckpt" in self.test_args: | |
ckpt_name = ( | |
os.path.basename(self.test_args.ckpt).split(".ckpt")[0] | |
+ f"_epoch{self._cur_epoch}" | |
) | |
self.root = os.path.join(save_dir, ckpt_name) | |
else: | |
self.root = save_dir | |
if "test_subdir" in self.test_args: | |
self.root = os.path.join(save_dir, self.test_args.test_subdir) | |
self.root_zs = os.path.join(self.root, "zs") | |
self.root_dec = os.path.join(self.root, "reconstructions") | |
self.root_inputs = os.path.join(self.root, "inputs") | |
os.makedirs(self.root, exist_ok=True) | |
if self.test_args.save_z: | |
os.makedirs(self.root_zs, exist_ok=True) | |
if self.test_args.save_reconstruction: | |
os.makedirs(self.root_dec, exist_ok=True) | |
if self.test_args.save_input: | |
os.makedirs(self.root_inputs, exist_ok=True) | |
assert self.test_args is not None | |
self.test_maximum = getattr( | |
self.test_args, "test_maximum", None | |
) # 1500 # 12000/8 | |
self.count = 0 | |
self.eval_metrics = {} | |
self.decodes = [] | |
self.save_decode_samples = 2048 | |
if getattr(self.test_args, "cal_metrics", False): | |
self.EvalLpips = EvalLpips() | |
def init_from_ckpt(self, path, ignore_keys=list()): | |
sd = torch.load(path, map_location="cpu") | |
try: | |
self._cur_epoch = sd["epoch"] | |
sd = sd["state_dict"] | |
except: | |
self._cur_epoch = "null" | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
self.load_state_dict(sd, strict=False) | |
# self.load_state_dict(sd, strict=True) | |
print(f"Restored from {path}") | |
def encode(self, x, **kwargs): | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior | |
def decode(self, z, **kwargs): | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
return dec | |
def forward(self, input, sample_posterior=True): | |
posterior = self.encode(input) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
dec = self.decode(z) | |
return dec, posterior | |
def get_input(self, batch, k): | |
x = batch[k] | |
# if len(x.shape) == 3: | |
# x = x[..., None] | |
# if x.dim() == 4: | |
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() | |
if x.dim() == 5 and self.input_dim == 4: | |
b, c, t, h, w = x.shape | |
self.b = b | |
self.t = t | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
return x | |
def training_step(self, batch, batch_idx, optimizer_idx): | |
inputs = self.get_input(batch, self.image_key) | |
reconstructions, posterior = self(inputs) | |
if optimizer_idx == 0: | |
# train encoder+decoder+logvar | |
aeloss, log_dict_ae = self.loss( | |
inputs, | |
reconstructions, | |
posterior, | |
optimizer_idx, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="train", | |
) | |
self.log( | |
"aeloss", | |
aeloss, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
) | |
self.log_dict( | |
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
return aeloss | |
if optimizer_idx == 1: | |
# train the discriminator | |
discloss, log_dict_disc = self.loss( | |
inputs, | |
reconstructions, | |
posterior, | |
optimizer_idx, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="train", | |
) | |
self.log( | |
"discloss", | |
discloss, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
) | |
self.log_dict( | |
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
return discloss | |
def validation_step(self, batch, batch_idx): | |
inputs = self.get_input(batch, self.image_key) | |
reconstructions, posterior = self(inputs) | |
aeloss, log_dict_ae = self.loss( | |
inputs, | |
reconstructions, | |
posterior, | |
0, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="val", | |
) | |
discloss, log_dict_disc = self.loss( | |
inputs, | |
reconstructions, | |
posterior, | |
1, | |
self.global_step, | |
last_layer=self.get_last_layer(), | |
split="val", | |
) | |
self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) | |
self.log_dict(log_dict_ae) | |
self.log_dict(log_dict_disc) | |
return self.log_dict | |
def test_step(self, batch, batch_idx): | |
# save z, dec | |
inputs = self.get_input(batch, self.image_key) | |
# forward | |
sample_posterior = True | |
posterior = self.encode(inputs) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
dec = self.decode(z) | |
# logs | |
if self.test_args.save_z: | |
torch.save( | |
z, | |
os.path.join( | |
self.root_zs, | |
f"zs_batch{batch_idx}_rank{self.global_rank}_shape{shape_to_str(z)}.pt", | |
), | |
) | |
if self.test_args.save_reconstruction: | |
tensor2videogrids( | |
dec, | |
self.root_dec, | |
f"reconstructions_batch{batch_idx}_rank{self.global_rank}_shape{shape_to_str(z)}.mp4", | |
fps=10, | |
) | |
if self.test_args.save_input: | |
tensor2videogrids( | |
inputs, | |
self.root_inputs, | |
f"inputs_batch{batch_idx}_rank{self.global_rank}_shape{shape_to_str(z)}.mp4", | |
fps=10, | |
) | |
if "save_z" in self.test_args and self.test_args.save_z: | |
dec_np = (dec.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) + 1) / 2 * 255 | |
dec_np = dec_np.astype(np.uint8) | |
self.root_dec_np = os.path.join(self.root, "reconstructions_np") | |
os.makedirs(self.root_dec_np, exist_ok=True) | |
np.savez( | |
os.path.join( | |
self.root_dec_np, | |
f"reconstructions_batch{batch_idx}_rank{self.global_rank}_shape{shape_to_str(dec_np)}.npz", | |
), | |
dec_np, | |
) | |
self.count += z.shape[0] | |
# misc | |
self.log("batch_idx", batch_idx, prog_bar=True) | |
self.log_dict(self.eval_metrics, prog_bar=True, logger=True) | |
torch.cuda.empty_cache() | |
if self.test_maximum is not None: | |
if self.count > self.test_maximum: | |
import sys | |
sys.exit() | |
else: | |
prog = self.count / self.test_maximum * 100 | |
print(f"Test progress: {prog:.2f}% [{self.count}/{self.test_maximum}]") | |
def on_test_end(self): | |
if self.test_args.cal_metrics: | |
psnrs, ssims, ms_ssims, lpipses = [], [], [], [] | |
n_batches = 0 | |
n_samples = 0 | |
overall = {} | |
for k, v in self.eval_metrics.items(): | |
psnrs.append(v["psnr"]) | |
ssims.append(v["ssim"]) | |
lpipses.append(v["lpips"]) | |
n_batches += 1 | |
n_samples += v["n_samples"] | |
mean_psnr = sum(psnrs) / len(psnrs) | |
mean_ssim = sum(ssims) / len(ssims) | |
# overall['ms_ssim'] = min(ms_ssims) | |
mean_lpips = sum(lpipses) / len(lpipses) | |
overall = { | |
"psnr": mean_psnr, | |
"ssim": mean_ssim, | |
"lpips": mean_lpips, | |
"n_batches": n_batches, | |
"n_samples": n_samples, | |
} | |
overall_t = torch.tensor([mean_psnr, mean_ssim, mean_lpips]) | |
# dump | |
for k, v in overall.items(): | |
if isinstance(v, torch.Tensor): | |
overall[k] = float(v) | |
with open( | |
os.path.join(self.root, f"reconstruction_metrics.json"), "w" | |
) as f: | |
json.dump(overall, f) | |
f.close() | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
opt_ae = torch.optim.Adam( | |
list(self.encoder.parameters()) | |
+ list(self.decoder.parameters()) | |
+ list(self.quant_conv.parameters()) | |
+ list(self.post_quant_conv.parameters()), | |
lr=lr, | |
betas=(0.5, 0.9), | |
) | |
opt_disc = torch.optim.Adam( | |
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9) | |
) | |
return [opt_ae, opt_disc], [] | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |
def log_images(self, batch, only_inputs=False, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
if not only_inputs: | |
xrec, posterior = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["samples"] = self.decode(torch.randn_like(posterior.sample())) | |
log["reconstructions"] = xrec | |
log["inputs"] = x | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0 | |
return x | |
class IdentityFirstStage(torch.nn.Module): | |
def __init__(self, *args, vq_interface=False, **kwargs): | |
self.vq_interface = vq_interface | |
super().__init__() | |
def encode(self, x, *args, **kwargs): | |
return x | |
def decode(self, x, *args, **kwargs): | |
return x | |
def quantize(self, x, *args, **kwargs): | |
if self.vq_interface: | |
return x, None, [None, None, None] | |
return x | |
def forward(self, x, *args, **kwargs): | |
return x | |