Spaces:
Running
on
Zero
Running
on
Zero
from functools import partial | |
from abc import abstractmethod | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
import torch.nn.functional as F | |
from core.models.utils_diffusion import timestep_embedding | |
from core.common import gradient_checkpoint | |
from core.basics import zero_module, conv_nd, linear, avg_pool_nd, normalization | |
from core.modules.attention import SpatialTransformer, TemporalTransformer | |
TASK_IDX_IMAGE = 0 | |
TASK_IDX_RAY = 1 | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward( | |
self, x, emb, context=None, batch_size=None, with_lora=False, time_steps=None | |
): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb, batch_size=batch_size) | |
elif isinstance(layer, SpatialTransformer): | |
x = layer(x, context, with_lora=with_lora) | |
elif isinstance(layer, TemporalTransformer): | |
x = rearrange(x, "(b f) c h w -> b c f h w", b=batch_size) | |
x = layer(x, context, with_lora=with_lora, time_steps=time_steps) | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
else: | |
x = layer(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd( | |
dims, | |
self.channels, | |
self.out_channels, | |
3, | |
stride=stride, | |
padding=padding, | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd( | |
dims, self.channels, self.out_channels, 3, padding=padding | |
) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
:param use_temporal_conv: if True, use the temporal convolution. | |
:param use_image_dataset: if True, the temporal parameters will not be optimized. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_scale_shift_norm=False, | |
dims=2, | |
use_checkpoint=False, | |
use_conv=False, | |
up=False, | |
down=False, | |
use_temporal_conv=False, | |
tempspatial_aware=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.use_temporal_conv = use_temporal_conv | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, 3, padding=1 | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
if self.use_temporal_conv: | |
self.temopral_conv = TemporalConvBlock( | |
self.out_channels, | |
self.out_channels, | |
dropout=0.1, | |
spatial_aware=tempspatial_aware, | |
) | |
def forward(self, x, emb, batch_size=None): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
input_tuple = (x, emb) | |
if batch_size: | |
forward_batchsize = partial(self._forward, batch_size=batch_size) | |
return gradient_checkpoint( | |
forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint | |
) | |
return gradient_checkpoint( | |
self._forward, input_tuple, self.parameters(), self.use_checkpoint | |
) | |
def _forward(self, x, emb, batch_size=None): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
h = self.skip_connection(x) + h | |
if self.use_temporal_conv and batch_size: | |
h = rearrange(h, "(b t) c h w -> b c t h w", b=batch_size) | |
h = self.temopral_conv(h) | |
h = rearrange(h, "b c t h w -> (b t) c h w") | |
return h | |
class TemporalConvBlock(nn.Module): | |
def __init__( | |
self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False | |
): | |
super(TemporalConvBlock, self).__init__() | |
if out_channels is None: | |
out_channels = in_channels | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1) | |
th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0) | |
tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3) | |
tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1) | |
# conv layers | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(32, in_channels), | |
nn.SiLU(), | |
nn.Conv3d( | |
in_channels, out_channels, th_kernel_shape, padding=th_padding_shape | |
), | |
) | |
self.conv2 = nn.Sequential( | |
nn.GroupNorm(32, out_channels), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d( | |
out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape | |
), | |
) | |
self.conv3 = nn.Sequential( | |
nn.GroupNorm(32, out_channels), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d( | |
out_channels, in_channels, th_kernel_shape, padding=th_padding_shape | |
), | |
) | |
self.conv4 = nn.Sequential( | |
nn.GroupNorm(32, out_channels), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d( | |
out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape | |
), | |
) | |
# zero out the last layer params,so the conv block is identity | |
nn.init.zeros_(self.conv4[-1].weight) | |
nn.init.zeros_(self.conv4[-1].bias) | |
def forward(self, x): | |
identity = x | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.conv3(x) | |
x = self.conv4(x) | |
return identity + x | |
class UNetModel(nn.Module): | |
""" | |
The full UNet model with attention and timestep embedding. | |
:param in_channels: in_channels in the input Tensor. | |
:param model_channels: base channel count for the model. | |
:param out_channels: channels in the output Tensor. | |
:param num_res_blocks: number of residual blocks per downsample. | |
:param attention_resolutions: a collection of downsample rates at which | |
attention will take place. May be a set, list, or tuple. | |
For example, if this contains 4, then at 4x downsampling, attention | |
will be used. | |
:param dropout: the dropout probability. | |
:param channel_mult: channel multiplier for each level of the UNet. | |
:param conv_resample: if True, use learned convolutions for upsampling and | |
downsampling. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param num_classes: if specified (as an int), then this model will be | |
class-conditional with `num_classes` classes. | |
:param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
:param num_heads: the number of attention heads in each attention layer. | |
:param num_heads_channels: if specified, ignore num_heads and instead use | |
a fixed channel width per attention head. | |
:param num_heads_upsample: works with num_heads to set a different number | |
of heads for upsampling. Deprecated. | |
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
:param resblock_updown: use residual blocks for up/downsampling. | |
:param use_new_attention_order: use a different attention pattern for potentially | |
increased efficiency. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0.0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
context_dim=None, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
transformer_depth=1, | |
use_linear=False, | |
use_checkpoint=False, | |
temporal_conv=False, | |
tempspatial_aware=False, | |
temporal_attention=True, | |
use_relative_position=True, | |
use_causal_attention=False, | |
temporal_length=None, | |
use_fp16=False, | |
addition_attention=False, | |
temporal_selfatt_only=True, | |
image_cross_attention=False, | |
image_cross_attention_scale_learnable=False, | |
default_fs=4, | |
fs_condition=False, | |
use_spatial_temporal_attention=False, | |
# >>> Extra Ray Options | |
use_addition_ray_output_head=False, | |
ray_channels=6, | |
use_lora_for_rays_in_output_blocks=False, | |
use_task_embedding=False, | |
use_ray_decoder=False, | |
use_ray_decoder_residual=False, | |
full_spatial_temporal_attention=False, | |
enhance_multi_view_correspondence=False, | |
camera_pose_condition=False, | |
use_feature_alignment=False, | |
): | |
super(UNetModel, self).__init__() | |
if num_heads == -1: | |
assert ( | |
num_head_channels != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
if num_head_channels == -1: | |
assert ( | |
num_heads != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.temporal_attention = temporal_attention | |
time_embed_dim = model_channels * 4 | |
self.use_checkpoint = use_checkpoint | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
temporal_self_att_only = True | |
self.addition_attention = addition_attention | |
self.temporal_length = temporal_length | |
self.image_cross_attention = image_cross_attention | |
self.image_cross_attention_scale_learnable = ( | |
image_cross_attention_scale_learnable | |
) | |
self.default_fs = default_fs | |
self.fs_condition = fs_condition | |
self.use_spatial_temporal_attention = use_spatial_temporal_attention | |
# >>> Extra Ray Options | |
self.use_addition_ray_output_head = use_addition_ray_output_head | |
self.use_lora_for_rays_in_output_blocks = use_lora_for_rays_in_output_blocks | |
if self.use_lora_for_rays_in_output_blocks: | |
assert ( | |
use_addition_ray_output_head | |
), "`use_addition_ray_output_head` is required to be True when using LoRA for rays in output blocks." | |
assert ( | |
not use_task_embedding | |
), "`use_task_embedding` cannot be True when `use_lora_for_rays_in_output_blocks` is enabled." | |
if self.use_addition_ray_output_head: | |
print("Using additional ray output head...") | |
assert (self.out_channels == 4) or ( | |
4 + ray_channels == self.out_channels | |
), f"`out_channels`={out_channels} is invalid." | |
self.out_channels = 4 | |
out_channels = 4 | |
self.ray_channels = ray_channels | |
self.use_ray_decoder = use_ray_decoder | |
if use_ray_decoder: | |
assert ( | |
not use_task_embedding | |
), "`use_task_embedding` cannot be True when `use_ray_decoder_layers` is enabled." | |
assert ( | |
use_addition_ray_output_head | |
), "`use_addition_ray_output_head` must be True when `use_ray_decoder_layers` is enabled." | |
self.use_ray_decoder_residual = use_ray_decoder_residual | |
# >>> Time/Task Embedding Blocks | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
if fs_condition: | |
self.fps_embedding = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
nn.init.zeros_(self.fps_embedding[-1].weight) | |
nn.init.zeros_(self.fps_embedding[-1].bias) | |
if camera_pose_condition: | |
self.camera_pose_condition = True | |
self.camera_pose_embedding = nn.Sequential( | |
linear(12, model_channels), | |
nn.SiLU(), | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
nn.init.zeros_(self.camera_pose_embedding[-1].weight) | |
nn.init.zeros_(self.camera_pose_embedding[-1].bias) | |
self.use_task_embedding = use_task_embedding | |
if use_task_embedding: | |
assert ( | |
not use_lora_for_rays_in_output_blocks | |
), "`use_lora_for_rays_in_output_blocks` and `use_task_embedding` cannot be True at the same time." | |
assert ( | |
use_addition_ray_output_head | |
), "`use_addition_ray_output_head` is required to be True when `use_task_embedding` is enabled." | |
self.task_embedding = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
nn.init.zeros_(self.task_embedding[-1].weight) | |
nn.init.zeros_(self.task_embedding[-1].bias) | |
self.task_parameters = nn.ParameterList( | |
[ | |
nn.Parameter( | |
torch.zeros(size=[model_channels], requires_grad=True) | |
), | |
nn.Parameter( | |
torch.zeros(size=[model_channels], requires_grad=True) | |
), | |
] | |
) | |
# >>> Input Block | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
if self.addition_attention: | |
self.init_attn = TimestepEmbedSequential( | |
TemporalTransformer( | |
model_channels, | |
n_heads=8, | |
d_head=num_head_channels, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_checkpoint=use_checkpoint, | |
only_self_att=temporal_selfatt_only, | |
causal_attention=False, | |
relative_position=use_relative_position, | |
temporal_length=temporal_length, | |
) | |
) | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers.append( | |
SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_linear=use_linear, | |
use_checkpoint=use_checkpoint, | |
disable_self_attn=False, | |
video_length=temporal_length, | |
image_cross_attention=self.image_cross_attention, | |
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, | |
) | |
) | |
if self.temporal_attention: | |
layers.append( | |
TemporalTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_linear=use_linear, | |
use_checkpoint=use_checkpoint, | |
only_self_att=temporal_self_att_only, | |
causal_attention=use_causal_attention, | |
relative_position=use_relative_position, | |
temporal_length=temporal_length, | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv, | |
), | |
SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_linear=use_linear, | |
use_checkpoint=use_checkpoint, | |
disable_self_attn=False, | |
video_length=temporal_length, | |
image_cross_attention=self.image_cross_attention, | |
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, | |
), | |
] | |
if self.temporal_attention: | |
layers.append( | |
TemporalTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_linear=use_linear, | |
use_checkpoint=use_checkpoint, | |
only_self_att=temporal_self_att_only, | |
causal_attention=use_causal_attention, | |
relative_position=use_relative_position, | |
temporal_length=temporal_length, | |
) | |
) | |
layers.append( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv, | |
) | |
) | |
# >>> Middle Block | |
self.middle_block = TimestepEmbedSequential(*layers) | |
# >>> Ray Decoder | |
if use_ray_decoder: | |
self.ray_decoder_blocks = nn.ModuleList([]) | |
# >>> Output Block | |
is_first_layer = True | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(num_res_blocks + 1): | |
ich = input_block_chans.pop() | |
layers = [ | |
ResBlock( | |
ch + ich, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=temporal_conv, | |
) | |
] | |
if use_ray_decoder: | |
if self.use_ray_decoder_residual: | |
ray_residual_ch = ich | |
else: | |
ray_residual_ch = 0 | |
ray_decoder_layers = [ | |
ResBlock( | |
(ch if is_first_layer else (ch // 10)) + ray_residual_ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels // 10, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
tempspatial_aware=tempspatial_aware, | |
use_temporal_conv=True, | |
) | |
] | |
is_first_layer = False | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
layers.append( | |
SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_linear=use_linear, | |
use_checkpoint=use_checkpoint, | |
disable_self_attn=False, | |
video_length=temporal_length, | |
image_cross_attention=self.image_cross_attention, | |
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable, | |
enable_lora=self.use_lora_for_rays_in_output_blocks, | |
) | |
) | |
if self.temporal_attention: | |
layers.append( | |
TemporalTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
use_linear=use_linear, | |
use_checkpoint=use_checkpoint, | |
only_self_att=temporal_self_att_only, | |
causal_attention=use_causal_attention, | |
relative_position=use_relative_position, | |
temporal_length=temporal_length, | |
use_extra_spatial_temporal_self_attention=use_spatial_temporal_attention, | |
enable_lora=self.use_lora_for_rays_in_output_blocks, | |
full_spatial_temporal_attention=full_spatial_temporal_attention, | |
enhance_multi_view_correspondence=enhance_multi_view_correspondence, | |
) | |
) | |
if level and i == num_res_blocks: | |
out_ch = ch | |
# out_ray_ch = ray_ch | |
layers.append( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True, | |
) | |
if resblock_updown | |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
if use_ray_decoder: | |
ray_decoder_layers.append( | |
ResBlock( | |
ch // 10, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch // 10, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True, | |
) | |
if resblock_updown | |
else Upsample( | |
ch // 10, | |
conv_resample, | |
dims=dims, | |
out_channels=out_ch // 10, | |
) | |
) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
if use_ray_decoder: | |
self.ray_decoder_blocks.append( | |
TimestepEmbedSequential(*ray_decoder_layers) | |
) | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
) | |
if self.use_addition_ray_output_head: | |
ray_model_channels = model_channels // 10 | |
self.ray_output_head = nn.Sequential( | |
normalization(ray_model_channels), | |
nn.SiLU(), | |
conv_nd(dims, ray_model_channels, ray_model_channels, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, ray_model_channels, ray_model_channels, 3, padding=1), | |
nn.SiLU(), | |
zero_module( | |
conv_nd(dims, ray_model_channels, self.ray_channels, 3, padding=1) | |
), | |
) | |
self.use_feature_alignment = use_feature_alignment | |
if self.use_feature_alignment: | |
self.feature_alignment_adapter = FeatureAlignmentAdapter( | |
time_embed_dim=time_embed_dim, use_checkpoint=use_checkpoint | |
) | |
def forward( | |
self, | |
x, | |
time_steps, | |
context=None, | |
features_adapter=None, | |
fs=None, | |
task_idx=None, | |
camera_poses=None, | |
return_input_block_features=False, | |
return_middle_feature=False, | |
return_output_block_features=False, | |
**kwargs, | |
): | |
intermediate_features = {} | |
if return_input_block_features: | |
intermediate_features["input"] = [] | |
if return_output_block_features: | |
intermediate_features["output"] = [] | |
b, t, _, _, _ = x.shape | |
t_emb = timestep_embedding( | |
time_steps, self.model_channels, repeat_only=False | |
).type(x.dtype) | |
emb = self.time_embed(t_emb) | |
# repeat t times for context [(b t) 77 768] & time embedding | |
# check if we use per-frame image conditioning | |
_, l_context, _ = context.shape | |
if l_context == 77 + t * 16: # !!! HARD CODE here | |
context_text, context_img = context[:, :77, :], context[:, 77:, :] | |
context_text = context_text.repeat_interleave(repeats=t, dim=0) | |
context_img = rearrange(context_img, "b (t l) c -> (b t) l c", t=t) | |
context = torch.cat([context_text, context_img], dim=1) | |
else: | |
context = context.repeat_interleave(repeats=t, dim=0) | |
emb = emb.repeat_interleave(repeats=t, dim=0) | |
# always in shape (b t) c h w, except for temporal layer | |
x = rearrange(x, "b t c h w -> (b t) c h w") | |
# combine emb | |
if self.fs_condition: | |
if fs is None: | |
fs = torch.tensor( | |
[self.default_fs] * b, dtype=torch.long, device=x.device | |
) | |
fs_emb = timestep_embedding( | |
fs, self.model_channels, repeat_only=False | |
).type(x.dtype) | |
fs_embed = self.fps_embedding(fs_emb) | |
fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0) | |
emb = emb + fs_embed | |
if self.camera_pose_condition: | |
# camera_poses: (b, t, 12) | |
camera_poses = rearrange(camera_poses, "b t x y -> (b t) (x y)") # x=3, y=4 | |
camera_poses_embed = self.camera_pose_embedding(camera_poses) | |
emb = emb + camera_poses_embed | |
if self.use_task_embedding: | |
assert ( | |
task_idx is not None | |
), "`task_idx` should not be None when `use_task_embedding` is enabled." | |
task_embed = self.task_embedding( | |
self.task_parameters[task_idx] | |
.reshape(1, self.model_channels) | |
.repeat(b, 1) | |
) | |
task_embed = task_embed.repeat_interleave(repeats=t, dim=0) | |
emb = emb + task_embed | |
h = x.type(self.dtype) | |
adapter_idx = 0 | |
hs = [] | |
for _id, module in enumerate(self.input_blocks): | |
h = module(h, emb, context=context, batch_size=b) | |
if _id == 0 and self.addition_attention: | |
h = self.init_attn(h, emb, context=context, batch_size=b) | |
# plug-in adapter features | |
if ((_id + 1) % 3 == 0) and features_adapter is not None: | |
h = h + features_adapter[adapter_idx] | |
adapter_idx += 1 | |
hs.append(h) | |
if return_input_block_features: | |
intermediate_features["input"].append(h) | |
if features_adapter is not None: | |
assert len(features_adapter) == adapter_idx, "Wrong features_adapter" | |
h = self.middle_block(h, emb, context=context, batch_size=b) | |
if return_middle_feature: | |
intermediate_features["middle"] = h | |
if self.use_feature_alignment: | |
feature_alignment_output = self.feature_alignment_adapter( | |
hs[2], hs[5], hs[8], emb=emb | |
) | |
# >>> Output Blocks Forward | |
if self.use_ray_decoder: | |
h_original = h | |
h_ray = h | |
for original_module, ray_module in zip( | |
self.output_blocks, self.ray_decoder_blocks | |
): | |
cur_hs = hs.pop() | |
h_original = torch.cat([h_original, cur_hs], dim=1) | |
h_original = original_module( | |
h_original, | |
emb, | |
context=context, | |
batch_size=b, | |
time_steps=time_steps, | |
) | |
if self.use_ray_decoder_residual: | |
h_ray = torch.cat([h_ray, cur_hs], dim=1) | |
h_ray = ray_module(h_ray, emb, context=context, batch_size=b) | |
if return_output_block_features: | |
print( | |
"return_output_block_features: h_original.shape=", | |
h_original.shape, | |
) | |
intermediate_features["output"].append(h_original.detach()) | |
h_original = h_original.type(x.dtype) | |
h_ray = h_ray.type(x.dtype) | |
y_original = self.out(h_original) | |
y_ray = self.ray_output_head(h_ray) | |
y = torch.cat([y_original, y_ray], dim=1) | |
else: | |
if self.use_lora_for_rays_in_output_blocks: | |
middle_h = h | |
h_original = middle_h | |
h_lora = middle_h | |
for output_idx, module in enumerate(self.output_blocks): | |
cur_hs = hs.pop() | |
h_original = torch.cat([h_original, cur_hs], dim=1) | |
h_original = module( | |
h_original, emb, context=context, batch_size=b, with_lora=False | |
) | |
h_lora = torch.cat([h_lora, cur_hs], dim=1) | |
h_lora = module( | |
h_lora, emb, context=context, batch_size=b, with_lora=True | |
) | |
h_original = h_original.type(x.dtype) | |
h_lora = h_lora.type(x.dtype) | |
y_original = self.out(h_original) | |
y_lora = self.ray_output_head(h_lora) | |
y = torch.cat([y_original, y_lora], dim=1) | |
else: | |
for module in self.output_blocks: | |
h = torch.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, context=context, batch_size=b) | |
h = h.type(x.dtype) | |
if self.use_task_embedding: | |
# Seperated Input (Branch Control in CPU) | |
# Serial Execution (GPU Vectorization Pending) | |
if task_idx == TASK_IDX_IMAGE: | |
y = self.out(h) | |
elif task_idx == TASK_IDX_RAY: | |
y = self.ray_output_head(h) | |
else: | |
raise NotImplementedError(f"Unsupported `task_idx`: {task_idx}") | |
else: | |
# Output ray and images at the same forward | |
y = self.out(h) | |
if self.use_addition_ray_output_head: | |
y_ray = self.ray_output_head(h) | |
y = torch.cat([y, y_ray], dim=1) | |
# reshape back to (b c t h w) | |
y = rearrange(y, "(b t) c h w -> b t c h w", b=b) | |
if ( | |
return_input_block_features | |
or return_output_block_features | |
or return_middle_feature | |
): | |
return y, intermediate_features | |
# Assume intermediate features are only request during non-training scenarios (e.g., feature visualization) | |
if self.use_feature_alignment: | |
return y, feature_alignment_output | |
return y | |
class FeatureAlignmentAdapter(torch.nn.Module): | |
def __init__(self, time_embed_dim, use_checkpoint, dropout=0.0, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.channel_adapter_conv_16 = torch.nn.Conv2d( | |
in_channels=1280, out_channels=320, kernel_size=1 | |
) | |
self.channel_adapter_conv_32 = torch.nn.Conv2d( | |
in_channels=640, out_channels=320, kernel_size=1 | |
) | |
self.upsampler_x2 = torch.nn.UpsamplingBilinear2d(scale_factor=2) | |
self.upsampler_x4 = torch.nn.UpsamplingBilinear2d(scale_factor=4) | |
self.res_block = ResBlock( | |
320 * 3, | |
time_embed_dim, | |
dropout, | |
out_channels=32 * 3, | |
dims=2, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=False, | |
) | |
self.final_conv = conv_nd( | |
dims=2, in_channels=32 * 3, out_channels=6, kernel_size=1 | |
) | |
def forward(self, feature_64, feature_32, feature_16, emb): | |
feature_16_adapted = self.channel_adapter_conv_16(feature_16) | |
feature_32_adapted = self.channel_adapter_conv_32(feature_32) | |
feature_16_upsampled = self.upsampler_x4(feature_16_adapted) | |
feature_32_upsampled = self.upsampler_x2(feature_32_adapted) | |
feature_all = torch.concat( | |
[feature_16_upsampled, feature_32_upsampled, feature_64], dim=1 | |
) | |
# bt, 3, h, w | |
return self.final_conv(self.res_block(feature_all, emb=emb)) | |