NVComposer / core /modules /networks /unet_modules.py
l-li's picture
init(*): initialization.
0b23d5a
from functools import partial
from abc import abstractmethod
import torch
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F
from core.models.utils_diffusion import timestep_embedding
from core.common import gradient_checkpoint
from core.basics import zero_module, conv_nd, linear, avg_pool_nd, normalization
from core.modules.attention import SpatialTransformer, TemporalTransformer
TASK_IDX_IMAGE = 0
TASK_IDX_RAY = 1
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(
self, x, emb, context=None, batch_size=None, with_lora=False, time_steps=None
):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb, batch_size=batch_size)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context, with_lora=with_lora)
elif isinstance(layer, TemporalTransformer):
x = rearrange(x, "(b f) c h w -> b c f h w", b=batch_size)
x = layer(x, context, with_lora=with_lora, time_steps=time_steps)
x = rearrange(x, "b c f h w -> (b f) c h w")
else:
x = layer(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=padding,
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(
dims, self.channels, self.out_channels, 3, padding=padding
)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
:param use_temporal_conv: if True, use the temporal convolution.
:param use_image_dataset: if True, the temporal parameters will not be optimized.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
use_conv=False,
up=False,
down=False,
use_temporal_conv=False,
tempspatial_aware=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.use_temporal_conv = use_temporal_conv
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
if self.use_temporal_conv:
self.temopral_conv = TemporalConvBlock(
self.out_channels,
self.out_channels,
dropout=0.1,
spatial_aware=tempspatial_aware,
)
def forward(self, x, emb, batch_size=None):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
input_tuple = (x, emb)
if batch_size:
forward_batchsize = partial(self._forward, batch_size=batch_size)
return gradient_checkpoint(
forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint
)
return gradient_checkpoint(
self._forward, input_tuple, self.parameters(), self.use_checkpoint
)
def _forward(self, x, emb, batch_size=None):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
h = self.skip_connection(x) + h
if self.use_temporal_conv and batch_size:
h = rearrange(h, "(b t) c h w -> b c t h w", b=batch_size)
h = self.temopral_conv(h)
h = rearrange(h, "b c t h w -> (b t) c h w")
return h
class TemporalConvBlock(nn.Module):
def __init__(
self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False
):
super(TemporalConvBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
self.in_channels = in_channels
self.out_channels = out_channels
th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1)
th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0)
tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3)
tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1)
# conv layers
self.conv1 = nn.Sequential(
nn.GroupNorm(32, in_channels),
nn.SiLU(),
nn.Conv3d(
in_channels, out_channels, th_kernel_shape, padding=th_padding_shape
),
)
self.conv2 = nn.Sequential(
nn.GroupNorm(32, out_channels),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(
out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape
),
)
self.conv3 = nn.Sequential(
nn.GroupNorm(32, out_channels),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(
out_channels, in_channels, th_kernel_shape, padding=th_padding_shape
),
)
self.conv4 = nn.Sequential(
nn.GroupNorm(32, out_channels),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(
out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape
),
)
# zero out the last layer params,so the conv block is identity
nn.init.zeros_(self.conv4[-1].weight)
nn.init.zeros_(self.conv4[-1].bias)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
return identity + x
class UNetModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: in_channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(
self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0.0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
context_dim=None,
use_scale_shift_norm=False,
resblock_updown=False,
num_heads=-1,
num_head_channels=-1,
transformer_depth=1,
use_linear=False,
use_checkpoint=False,
temporal_conv=False,
tempspatial_aware=False,
temporal_attention=True,
use_relative_position=True,
use_causal_attention=False,
temporal_length=None,
use_fp16=False,
addition_attention=False,
temporal_selfatt_only=True,
image_cross_attention=False,
image_cross_attention_scale_learnable=False,
default_fs=4,
fs_condition=False,
use_spatial_temporal_attention=False,
# >>> Extra Ray Options
use_addition_ray_output_head=False,
ray_channels=6,
use_lora_for_rays_in_output_blocks=False,
use_task_embedding=False,
use_ray_decoder=False,
use_ray_decoder_residual=False,
full_spatial_temporal_attention=False,
enhance_multi_view_correspondence=False,
camera_pose_condition=False,
use_feature_alignment=False,
):
super(UNetModel, self).__init__()
if num_heads == -1:
assert (
num_head_channels != -1
), "Either num_heads or num_head_channels has to be set"
if num_head_channels == -1:
assert (
num_heads != -1
), "Either num_heads or num_head_channels has to be set"
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.temporal_attention = temporal_attention
time_embed_dim = model_channels * 4
self.use_checkpoint = use_checkpoint
self.dtype = torch.float16 if use_fp16 else torch.float32
temporal_self_att_only = True
self.addition_attention = addition_attention
self.temporal_length = temporal_length
self.image_cross_attention = image_cross_attention
self.image_cross_attention_scale_learnable = (
image_cross_attention_scale_learnable
)
self.default_fs = default_fs
self.fs_condition = fs_condition
self.use_spatial_temporal_attention = use_spatial_temporal_attention
# >>> Extra Ray Options
self.use_addition_ray_output_head = use_addition_ray_output_head
self.use_lora_for_rays_in_output_blocks = use_lora_for_rays_in_output_blocks
if self.use_lora_for_rays_in_output_blocks:
assert (
use_addition_ray_output_head
), "`use_addition_ray_output_head` is required to be True when using LoRA for rays in output blocks."
assert (
not use_task_embedding
), "`use_task_embedding` cannot be True when `use_lora_for_rays_in_output_blocks` is enabled."
if self.use_addition_ray_output_head:
print("Using additional ray output head...")
assert (self.out_channels == 4) or (
4 + ray_channels == self.out_channels
), f"`out_channels`={out_channels} is invalid."
self.out_channels = 4
out_channels = 4
self.ray_channels = ray_channels
self.use_ray_decoder = use_ray_decoder
if use_ray_decoder:
assert (
not use_task_embedding
), "`use_task_embedding` cannot be True when `use_ray_decoder_layers` is enabled."
assert (
use_addition_ray_output_head
), "`use_addition_ray_output_head` must be True when `use_ray_decoder_layers` is enabled."
self.use_ray_decoder_residual = use_ray_decoder_residual
# >>> Time/Task Embedding Blocks
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if fs_condition:
self.fps_embedding = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
nn.init.zeros_(self.fps_embedding[-1].weight)
nn.init.zeros_(self.fps_embedding[-1].bias)
if camera_pose_condition:
self.camera_pose_condition = True
self.camera_pose_embedding = nn.Sequential(
linear(12, model_channels),
nn.SiLU(),
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
nn.init.zeros_(self.camera_pose_embedding[-1].weight)
nn.init.zeros_(self.camera_pose_embedding[-1].bias)
self.use_task_embedding = use_task_embedding
if use_task_embedding:
assert (
not use_lora_for_rays_in_output_blocks
), "`use_lora_for_rays_in_output_blocks` and `use_task_embedding` cannot be True at the same time."
assert (
use_addition_ray_output_head
), "`use_addition_ray_output_head` is required to be True when `use_task_embedding` is enabled."
self.task_embedding = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
nn.init.zeros_(self.task_embedding[-1].weight)
nn.init.zeros_(self.task_embedding[-1].bias)
self.task_parameters = nn.ParameterList(
[
nn.Parameter(
torch.zeros(size=[model_channels], requires_grad=True)
),
nn.Parameter(
torch.zeros(size=[model_channels], requires_grad=True)
),
]
)
# >>> Input Block
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
if self.addition_attention:
self.init_attn = TimestepEmbedSequential(
TemporalTransformer(
model_channels,
n_heads=8,
d_head=num_head_channels,
depth=transformer_depth,
context_dim=context_dim,
use_checkpoint=use_checkpoint,
only_self_att=temporal_selfatt_only,
causal_attention=False,
relative_position=use_relative_position,
temporal_length=temporal_length,
)
)
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
use_linear=use_linear,
use_checkpoint=use_checkpoint,
disable_self_attn=False,
video_length=temporal_length,
image_cross_attention=self.image_cross_attention,
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
use_linear=use_linear,
use_checkpoint=use_checkpoint,
only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention,
relative_position=use_relative_position,
temporal_length=temporal_length,
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
),
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
use_linear=use_linear,
use_checkpoint=use_checkpoint,
disable_self_attn=False,
video_length=temporal_length,
image_cross_attention=self.image_cross_attention,
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
),
]
if self.temporal_attention:
layers.append(
TemporalTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
use_linear=use_linear,
use_checkpoint=use_checkpoint,
only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention,
relative_position=use_relative_position,
temporal_length=temporal_length,
)
)
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
)
)
# >>> Middle Block
self.middle_block = TimestepEmbedSequential(*layers)
# >>> Ray Decoder
if use_ray_decoder:
self.ray_decoder_blocks = nn.ModuleList([])
# >>> Output Block
is_first_layer = True
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv,
)
]
if use_ray_decoder:
if self.use_ray_decoder_residual:
ray_residual_ch = ich
else:
ray_residual_ch = 0
ray_decoder_layers = [
ResBlock(
(ch if is_first_layer else (ch // 10)) + ray_residual_ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels // 10,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
tempspatial_aware=tempspatial_aware,
use_temporal_conv=True,
)
]
is_first_layer = False
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
use_linear=use_linear,
use_checkpoint=use_checkpoint,
disable_self_attn=False,
video_length=temporal_length,
image_cross_attention=self.image_cross_attention,
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
enable_lora=self.use_lora_for_rays_in_output_blocks,
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
use_linear=use_linear,
use_checkpoint=use_checkpoint,
only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention,
relative_position=use_relative_position,
temporal_length=temporal_length,
use_extra_spatial_temporal_self_attention=use_spatial_temporal_attention,
enable_lora=self.use_lora_for_rays_in_output_blocks,
full_spatial_temporal_attention=full_spatial_temporal_attention,
enhance_multi_view_correspondence=enhance_multi_view_correspondence,
)
)
if level and i == num_res_blocks:
out_ch = ch
# out_ray_ch = ray_ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
if use_ray_decoder:
ray_decoder_layers.append(
ResBlock(
ch // 10,
time_embed_dim,
dropout,
out_channels=out_ch // 10,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(
ch // 10,
conv_resample,
dims=dims,
out_channels=out_ch // 10,
)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
if use_ray_decoder:
self.ray_decoder_blocks.append(
TimestepEmbedSequential(*ray_decoder_layers)
)
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.use_addition_ray_output_head:
ray_model_channels = model_channels // 10
self.ray_output_head = nn.Sequential(
normalization(ray_model_channels),
nn.SiLU(),
conv_nd(dims, ray_model_channels, ray_model_channels, 3, padding=1),
nn.SiLU(),
conv_nd(dims, ray_model_channels, ray_model_channels, 3, padding=1),
nn.SiLU(),
zero_module(
conv_nd(dims, ray_model_channels, self.ray_channels, 3, padding=1)
),
)
self.use_feature_alignment = use_feature_alignment
if self.use_feature_alignment:
self.feature_alignment_adapter = FeatureAlignmentAdapter(
time_embed_dim=time_embed_dim, use_checkpoint=use_checkpoint
)
def forward(
self,
x,
time_steps,
context=None,
features_adapter=None,
fs=None,
task_idx=None,
camera_poses=None,
return_input_block_features=False,
return_middle_feature=False,
return_output_block_features=False,
**kwargs,
):
intermediate_features = {}
if return_input_block_features:
intermediate_features["input"] = []
if return_output_block_features:
intermediate_features["output"] = []
b, t, _, _, _ = x.shape
t_emb = timestep_embedding(
time_steps, self.model_channels, repeat_only=False
).type(x.dtype)
emb = self.time_embed(t_emb)
# repeat t times for context [(b t) 77 768] & time embedding
# check if we use per-frame image conditioning
_, l_context, _ = context.shape
if l_context == 77 + t * 16: # !!! HARD CODE here
context_text, context_img = context[:, :77, :], context[:, 77:, :]
context_text = context_text.repeat_interleave(repeats=t, dim=0)
context_img = rearrange(context_img, "b (t l) c -> (b t) l c", t=t)
context = torch.cat([context_text, context_img], dim=1)
else:
context = context.repeat_interleave(repeats=t, dim=0)
emb = emb.repeat_interleave(repeats=t, dim=0)
# always in shape (b t) c h w, except for temporal layer
x = rearrange(x, "b t c h w -> (b t) c h w")
# combine emb
if self.fs_condition:
if fs is None:
fs = torch.tensor(
[self.default_fs] * b, dtype=torch.long, device=x.device
)
fs_emb = timestep_embedding(
fs, self.model_channels, repeat_only=False
).type(x.dtype)
fs_embed = self.fps_embedding(fs_emb)
fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0)
emb = emb + fs_embed
if self.camera_pose_condition:
# camera_poses: (b, t, 12)
camera_poses = rearrange(camera_poses, "b t x y -> (b t) (x y)") # x=3, y=4
camera_poses_embed = self.camera_pose_embedding(camera_poses)
emb = emb + camera_poses_embed
if self.use_task_embedding:
assert (
task_idx is not None
), "`task_idx` should not be None when `use_task_embedding` is enabled."
task_embed = self.task_embedding(
self.task_parameters[task_idx]
.reshape(1, self.model_channels)
.repeat(b, 1)
)
task_embed = task_embed.repeat_interleave(repeats=t, dim=0)
emb = emb + task_embed
h = x.type(self.dtype)
adapter_idx = 0
hs = []
for _id, module in enumerate(self.input_blocks):
h = module(h, emb, context=context, batch_size=b)
if _id == 0 and self.addition_attention:
h = self.init_attn(h, emb, context=context, batch_size=b)
# plug-in adapter features
if ((_id + 1) % 3 == 0) and features_adapter is not None:
h = h + features_adapter[adapter_idx]
adapter_idx += 1
hs.append(h)
if return_input_block_features:
intermediate_features["input"].append(h)
if features_adapter is not None:
assert len(features_adapter) == adapter_idx, "Wrong features_adapter"
h = self.middle_block(h, emb, context=context, batch_size=b)
if return_middle_feature:
intermediate_features["middle"] = h
if self.use_feature_alignment:
feature_alignment_output = self.feature_alignment_adapter(
hs[2], hs[5], hs[8], emb=emb
)
# >>> Output Blocks Forward
if self.use_ray_decoder:
h_original = h
h_ray = h
for original_module, ray_module in zip(
self.output_blocks, self.ray_decoder_blocks
):
cur_hs = hs.pop()
h_original = torch.cat([h_original, cur_hs], dim=1)
h_original = original_module(
h_original,
emb,
context=context,
batch_size=b,
time_steps=time_steps,
)
if self.use_ray_decoder_residual:
h_ray = torch.cat([h_ray, cur_hs], dim=1)
h_ray = ray_module(h_ray, emb, context=context, batch_size=b)
if return_output_block_features:
print(
"return_output_block_features: h_original.shape=",
h_original.shape,
)
intermediate_features["output"].append(h_original.detach())
h_original = h_original.type(x.dtype)
h_ray = h_ray.type(x.dtype)
y_original = self.out(h_original)
y_ray = self.ray_output_head(h_ray)
y = torch.cat([y_original, y_ray], dim=1)
else:
if self.use_lora_for_rays_in_output_blocks:
middle_h = h
h_original = middle_h
h_lora = middle_h
for output_idx, module in enumerate(self.output_blocks):
cur_hs = hs.pop()
h_original = torch.cat([h_original, cur_hs], dim=1)
h_original = module(
h_original, emb, context=context, batch_size=b, with_lora=False
)
h_lora = torch.cat([h_lora, cur_hs], dim=1)
h_lora = module(
h_lora, emb, context=context, batch_size=b, with_lora=True
)
h_original = h_original.type(x.dtype)
h_lora = h_lora.type(x.dtype)
y_original = self.out(h_original)
y_lora = self.ray_output_head(h_lora)
y = torch.cat([y_original, y_lora], dim=1)
else:
for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context=context, batch_size=b)
h = h.type(x.dtype)
if self.use_task_embedding:
# Seperated Input (Branch Control in CPU)
# Serial Execution (GPU Vectorization Pending)
if task_idx == TASK_IDX_IMAGE:
y = self.out(h)
elif task_idx == TASK_IDX_RAY:
y = self.ray_output_head(h)
else:
raise NotImplementedError(f"Unsupported `task_idx`: {task_idx}")
else:
# Output ray and images at the same forward
y = self.out(h)
if self.use_addition_ray_output_head:
y_ray = self.ray_output_head(h)
y = torch.cat([y, y_ray], dim=1)
# reshape back to (b c t h w)
y = rearrange(y, "(b t) c h w -> b t c h w", b=b)
if (
return_input_block_features
or return_output_block_features
or return_middle_feature
):
return y, intermediate_features
# Assume intermediate features are only request during non-training scenarios (e.g., feature visualization)
if self.use_feature_alignment:
return y, feature_alignment_output
return y
class FeatureAlignmentAdapter(torch.nn.Module):
def __init__(self, time_embed_dim, use_checkpoint, dropout=0.0, *args, **kwargs):
super().__init__(*args, **kwargs)
self.channel_adapter_conv_16 = torch.nn.Conv2d(
in_channels=1280, out_channels=320, kernel_size=1
)
self.channel_adapter_conv_32 = torch.nn.Conv2d(
in_channels=640, out_channels=320, kernel_size=1
)
self.upsampler_x2 = torch.nn.UpsamplingBilinear2d(scale_factor=2)
self.upsampler_x4 = torch.nn.UpsamplingBilinear2d(scale_factor=4)
self.res_block = ResBlock(
320 * 3,
time_embed_dim,
dropout,
out_channels=32 * 3,
dims=2,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=False,
)
self.final_conv = conv_nd(
dims=2, in_channels=32 * 3, out_channels=6, kernel_size=1
)
def forward(self, feature_64, feature_32, feature_16, emb):
feature_16_adapted = self.channel_adapter_conv_16(feature_16)
feature_32_adapted = self.channel_adapter_conv_32(feature_32)
feature_16_upsampled = self.upsampler_x4(feature_16_adapted)
feature_32_upsampled = self.upsampler_x2(feature_32_adapted)
feature_all = torch.concat(
[feature_16_upsampled, feature_32_upsampled, feature_64], dim=1
)
# bt, 3, h, w
return self.final_conv(self.res_block(feature_all, emb=emb))