Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Various positional encodings for the transformer. | |
""" | |
import math | |
import torch | |
from torch import nn | |
class PositionEmbeddingSine(nn.Module): | |
""" | |
This is a more standard version of the position embedding, very similar to the one | |
used by the Attention is all you need paper, generalized to work on images. | |
""" | |
def __init__( | |
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None | |
): | |
super().__init__() | |
self.num_pos_feats = num_pos_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
def forward(self, token_tensors): | |
# input: (B,C,H,W) | |
x = token_tensors | |
h, w = x.shape[-2:] | |
identity_map = torch.ones((h, w), device=x.device) | |
y_embed = identity_map.cumsum(0, dtype=torch.float32) | |
x_embed = identity_map.cumsum(1, dtype=torch.float32) | |
if self.normalize: | |
eps = 1e-6 | |
y_embed = y_embed / (y_embed[-1:, :] + eps) * self.scale | |
x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | |
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | |
pos_x = x_embed[:, :, None] / dim_t | |
pos_y = y_embed[:, :, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3 | |
).flatten(2) | |
pos_y = torch.stack( | |
(pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3 | |
).flatten(2) | |
pos = torch.cat((pos_y, pos_x), dim=2).permute(2, 0, 1) | |
batch_pos = pos.unsqueeze(0).repeat(x.shape[0], 1, 1, 1) | |
return batch_pos | |
class PositionEmbeddingLearned(nn.Module): | |
""" | |
Absolute pos embedding, learned. | |
""" | |
def __init__(self, n_pos_x=16, n_pos_y=16, num_pos_feats=64): | |
super().__init__() | |
self.row_embed = nn.Embedding(n_pos_y, num_pos_feats) | |
self.col_embed = nn.Embedding(n_pos_x, num_pos_feats) | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.uniform_(self.row_embed.weight) | |
nn.init.uniform_(self.col_embed.weight) | |
def forward(self, token_tensors): | |
# input: (B,C,H,W) | |
x = token_tensors | |
h, w = x.shape[-2:] | |
i = torch.arange(w, device=x.device) | |
j = torch.arange(h, device=x.device) | |
x_emb = self.col_embed(i) | |
y_emb = self.row_embed(j) | |
pos = torch.cat( | |
[ | |
x_emb.unsqueeze(0).repeat(h, 1, 1), | |
y_emb.unsqueeze(1).repeat(1, w, 1), | |
], | |
dim=-1, | |
).permute(2, 0, 1) | |
batch_pos = pos.unsqueeze(0).repeat(x.shape[0], 1, 1, 1) | |
return batch_pos | |
def build_position_encoding(num_pos_feats=64, n_pos_x=16, n_pos_y=16, is_learned=False): | |
if is_learned: | |
position_embedding = PositionEmbeddingLearned(n_pos_x, n_pos_y, num_pos_feats) | |
else: | |
position_embedding = PositionEmbeddingSine(num_pos_feats, normalize=True) | |
return position_embedding | |