import torch import torch.nn as nn from einops import rearrange from taming.modules.losses.vqperceptual import * class LPIPSWithDiscriminator(nn.Module): def __init__( self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, disc_loss="hinge", max_bs=None, ): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight # output log variance self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = NLayerDiscriminator( input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm ).apply(weights_init) self.discriminator_iter_start = disc_start self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional self.max_bs = max_bs def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad( nll_loss, self.last_layer[0], retain_graph=True )[0] g_grads = torch.autograd.grad( g_loss, self.last_layer[0], retain_graph=True )[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward( self, inputs, reconstructions, posteriors, optimizer_idx, global_step, last_layer=None, cond=None, split="train", weights=None, ): if inputs.dim() == 5: inputs = rearrange(inputs, "b c t h w -> (b t) c h w") if reconstructions.dim() == 5: reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w") rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) if self.perceptual_weight > 0: if self.max_bs is not None and self.max_bs < inputs.shape[0]: input_list = torch.split(inputs, self.max_bs, dim=0) reconstruction_list = torch.split(reconstructions, self.max_bs, dim=0) p_losses = [ self.perceptual_loss( inputs.contiguous(), reconstructions.contiguous() ) for inputs, reconstructions in zip(input_list, reconstruction_list) ] p_loss = torch.cat(p_losses, dim=0) else: p_loss = self.perceptual_loss( inputs.contiguous(), reconstructions.contiguous() ) rec_loss = rec_loss + self.perceptual_weight * p_loss nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights * nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] # now the GAN part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator( torch.cat((reconstructions.contiguous(), cond), dim=1) ) g_loss = -torch.mean(logits_fake) if self.disc_factor > 0.0: try: d_weight = self.calculate_adaptive_weight( nll_loss, g_loss, last_layer=last_layer ) except RuntimeError: assert not self.training d_weight = torch.tensor(0.0) else: d_weight = torch.tensor(0.0) disc_factor = adopt_weight( self.disc_factor, global_step, threshold=self.discriminator_iter_start ) loss = ( weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss ) log = { "{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } return loss, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator( torch.cat((inputs.contiguous().detach(), cond), dim=1) ) logits_fake = self.discriminator( torch.cat((reconstructions.contiguous().detach(), cond), dim=1) ) disc_factor = adopt_weight( self.disc_factor, global_step, threshold=self.discriminator_iter_start ) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = { "{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean(), } return d_loss, log