Spaces:
Sleeping
Sleeping
from diffusers import DiffusionPipeline, EulerDiscreteScheduler | |
import torch | |
from transformers import pipeline | |
import gradio as gr | |
from PIL import Image | |
from diffusers.utils import load_image | |
import os, random, gc, re, json, time, shutil, glob | |
import PIL.Image | |
import tqdm | |
from accelerate import Accelerator | |
from huggingface_hub import HfApi, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem | |
HfApi=HfApi() | |
HF_TOKEN=os.getenv("HF_TOKEN") | |
HF_HUB_DISABLE_TELEMETRY=1 | |
DO_NOT_TRACK=1 | |
HF_HUB_ENABLE_HF_TRANSFER=0 | |
accelerator = Accelerator(cpu=True) | |
InferenceClient=InferenceClient() | |
apol=[] | |
pipe = accelerator.prepare(DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.bfloat16, use_safetensors=True, variant="fp16", safety_checker=None)) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe = accelerator.prepare(pipe.to("cpu")) | |
def chdr(apol,prompt,modil,stips,fnamo,gaul): | |
try: | |
type="SDXL_Trb" | |
los="" | |
tre='./tmpo/'+fnamo+'.json' | |
tra='./tmpo/'+fnamo+'_0.png' | |
trm='./tmpo/'+fnamo+'_1.png' | |
flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"] | |
flng=[itm[::-1] for itm in flng] | |
ptn = r"\b" + r"\b|\b".join(flng) + r"\b" | |
if re.search(ptn, prompt, re.IGNORECASE): | |
print("onon buddy") | |
else: | |
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type} | |
with open(tre, 'w') as f: | |
json.dump(dobj, f) | |
HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) | |
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,} | |
try: | |
for pxn in glob.glob('./tmpo/*.png'): | |
os.remove(pxn) | |
except: | |
print("lou") | |
with open(tre, 'w') as f: | |
json.dump(dobj, f) | |
HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) | |
try: | |
for pgn in glob.glob('./tmpo/*.png'): | |
os.remove(pgn) | |
for jgn in glob.glob('./tmpo/*.json'): | |
os.remove(jgn) | |
del tre | |
del tra | |
del trm | |
except: | |
print("cant") | |
except: | |
print("failed to make obj") | |
def plax(gaul,req: gr.Request): | |
gaul=str(req.headers) | |
return gaul | |
def plex(prompt,stips,nut,wit,het,gaul,progress=gr.Progress(track_tqdm=True)): | |
gc.collect() | |
apol=[] | |
modil="stabilityai/sdxl-turbo" | |
fnamo=""+str(int(time.time()))+"" | |
if nut == 0: | |
nm = random.randint(1, 2147483616) | |
while nm % 32 != 0: | |
nm = random.randint(1, 2147483616) | |
else: | |
nm=nut | |
generator = torch.Generator(device="cpu").manual_seed(nm) | |
image = pipe(prompt=[prompt]*2,num_inference_steps=stips,width=512,height=512,guidance_scale=0.0,generator=generator) | |
for a, imze in enumerate(image["images"]): | |
apol.append(imze) | |
imze.save('./tmpo/'+fnamo+'_'+str(a)+'.png', 'PNG') | |
chdr(apol,prompt,modil,stips,fnamo,gaul) | |
return apol | |
def aip(ill,api_name="/run"): | |
return | |
def pit(ill,api_name="/predict"): | |
return | |
with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface: | |
##iface.description="Running on cpu, very slow! by JoPmt." | |
out=gr.Gallery(label="Generated Output Image", columns=1) | |
inut=gr.Textbox(label="Prompt") | |
gaul=gr.Textbox(visible=False) | |
btn=gr.Button("GENERATE") | |
with gr.Accordion("Advanced Settings", open=False): | |
inyt=gr.Slider(label="Num inference steps",minimum=2,step=1,maximum=10,value=4) | |
indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0) | |
inwt=gr.Slider(label="Width",minimum=256,step=32,maximum=768,value=512) | |
inht=gr.Slider(label="Height",minimum=256,step=32,maximum=768,value=512) | |
btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,inyt,indt,inwt,inht,gaul]) | |
iface.queue(max_size=1,api_open=False) | |
iface.launch(max_threads=20,inline=False,show_api=False) |