radames commited on
Commit
46bd9ac
·
1 Parent(s): 6df186b

pagecontent from pipelines

Browse files
app_init.py CHANGED
@@ -3,6 +3,7 @@ from fastapi.responses import StreamingResponse, JSONResponse
3
  from fastapi.middleware.cors import CORSMiddleware
4
  from fastapi.staticfiles import StaticFiles
5
  from fastapi import Request
 
6
 
7
  import logging
8
  import traceback
@@ -144,13 +145,18 @@ def init_app(app: FastAPI, user_data: UserData, args: Args, pipeline):
144
  # route to setup frontend
145
  @app.get("/settings")
146
  async def settings():
147
- info = pipeline.Info.schema()
 
 
 
 
148
  input_params = pipeline.InputParams.schema()
149
  return JSONResponse(
150
  {
151
- "info": info,
152
  "input_params": input_params,
153
  "max_queue_size": args.max_queue_size,
 
154
  }
155
  )
156
 
 
3
  from fastapi.middleware.cors import CORSMiddleware
4
  from fastapi.staticfiles import StaticFiles
5
  from fastapi import Request
6
+ import markdown2
7
 
8
  import logging
9
  import traceback
 
145
  # route to setup frontend
146
  @app.get("/settings")
147
  async def settings():
148
+ info_schema = pipeline.Info.schema()
149
+ info = pipeline.Info()
150
+ if info.page_content:
151
+ page_content = markdown2.markdown(info.page_content)
152
+
153
  input_params = pipeline.InputParams.schema()
154
  return JSONResponse(
155
  {
156
+ "info": info_schema,
157
  "input_params": input_params,
158
  "max_queue_size": args.max_queue_size,
159
+ "page_content": page_content if info.page_content else "",
160
  }
161
  )
162
 
frontend/src/lib/components/PipelineOptions.svelte CHANGED
@@ -1,6 +1,5 @@
1
  <script lang="ts">
2
- import { createEventDispatcher } from 'svelte';
3
- import type { FieldProps } from '$lib/types';
4
  import { FieldType } from '$lib/types';
5
  import InputRange from './InputRange.svelte';
6
  import SeedInput from './SeedInput.svelte';
@@ -9,10 +8,10 @@
9
  import Selectlist from './Selectlist.svelte';
10
  import { pipelineValues } from '$lib/store';
11
 
12
- export let pipelineParams: FieldProps[];
13
 
14
- $: advanceOptions = pipelineParams?.filter((e) => e?.hide == true);
15
- $: featuredOptions = pipelineParams?.filter((e) => e?.hide !== true);
16
  </script>
17
 
18
  <div class="flex flex-col gap-3">
@@ -37,7 +36,7 @@
37
  <details>
38
  <summary class="cursor-pointer font-medium">Advanced Options</summary>
39
  <div
40
- class="grid grid-cols-1 items-center gap-3 {pipelineParams.length > 5
41
  ? 'sm:grid-cols-2'
42
  : ''}"
43
  >
 
1
  <script lang="ts">
2
+ import type { Fields } from '$lib/types';
 
3
  import { FieldType } from '$lib/types';
4
  import InputRange from './InputRange.svelte';
5
  import SeedInput from './SeedInput.svelte';
 
8
  import Selectlist from './Selectlist.svelte';
9
  import { pipelineValues } from '$lib/store';
10
 
11
+ export let pipelineParams: Fields;
12
 
13
+ $: advanceOptions = Object.values(pipelineParams)?.filter((e) => e?.hide == true);
14
+ $: featuredOptions = Object.values(pipelineParams)?.filter((e) => e?.hide !== true);
15
  </script>
16
 
17
  <div class="flex flex-col gap-3">
 
36
  <details>
37
  <summary class="cursor-pointer font-medium">Advanced Options</summary>
38
  <div
39
+ class="grid grid-cols-1 items-center gap-3 {Object.values(pipelineParams).length > 5
40
  ? 'sm:grid-cols-2'
41
  : ''}"
42
  >
frontend/src/lib/components/VideoInput.svelte CHANGED
@@ -10,21 +10,23 @@
10
  mediaDevices
11
  } from '$lib/mediaStream';
12
  import MediaListSwitcher from './MediaListSwitcher.svelte';
 
 
 
13
 
14
  let videoEl: HTMLVideoElement;
15
  let canvasEl: HTMLCanvasElement;
16
  let ctx: CanvasRenderingContext2D;
17
  let videoFrameCallbackId: number;
18
- const WIDTH = 768;
19
- const HEIGHT = 768;
20
  // ajust the throttle time to your needs
21
  const THROTTLE_TIME = 1000 / 15;
22
  let selectedDevice: string = '';
23
 
24
  onMount(() => {
25
  ctx = canvasEl.getContext('2d') as CanvasRenderingContext2D;
26
- canvasEl.width = WIDTH;
27
- canvasEl.height = HEIGHT;
28
  });
29
  $: {
30
  console.log(selectedDevice);
@@ -46,10 +48,10 @@
46
  const videoHeight = videoEl.videoHeight;
47
  const blob = await grapCropBlobImg(
48
  videoEl,
49
- videoWidth / 2 - WIDTH / 2,
50
- videoHeight / 2 - HEIGHT / 2,
51
- WIDTH,
52
- HEIGHT
53
  );
54
 
55
  onFrameChangeStore.set({ blob });
 
10
  mediaDevices
11
  } from '$lib/mediaStream';
12
  import MediaListSwitcher from './MediaListSwitcher.svelte';
13
+ export let width = 512;
14
+ export let height = 512;
15
+ const size = { width, height };
16
 
17
  let videoEl: HTMLVideoElement;
18
  let canvasEl: HTMLCanvasElement;
19
  let ctx: CanvasRenderingContext2D;
20
  let videoFrameCallbackId: number;
21
+
 
22
  // ajust the throttle time to your needs
23
  const THROTTLE_TIME = 1000 / 15;
24
  let selectedDevice: string = '';
25
 
26
  onMount(() => {
27
  ctx = canvasEl.getContext('2d') as CanvasRenderingContext2D;
28
+ canvasEl.width = size.width;
29
+ canvasEl.height = size.height;
30
  });
31
  $: {
32
  console.log(selectedDevice);
 
48
  const videoHeight = videoEl.videoHeight;
49
  const blob = await grapCropBlobImg(
50
  videoEl,
51
+ videoWidth / 2 - size.width / 2,
52
+ videoHeight / 2 - size.height / 2,
53
+ size.width,
54
+ size.height
55
  );
56
 
57
  onFrameChangeStore.set({ blob });
frontend/src/lib/types.ts CHANGED
@@ -11,6 +11,11 @@ export const enum PipelineMode {
11
  TEXT = "text",
12
  }
13
 
 
 
 
 
 
14
  export interface FieldProps {
15
  default: number | string;
16
  max?: number;
 
11
  TEXT = "text",
12
  }
13
 
14
+
15
+ export interface Fields {
16
+ [key: string]: FieldProps;
17
+ }
18
+
19
  export interface FieldProps {
20
  default: number | string;
21
  max?: number;
frontend/src/routes/+page.svelte CHANGED
@@ -1,6 +1,6 @@
1
  <script lang="ts">
2
  import { onMount } from 'svelte';
3
- import type { FieldProps, PipelineInfo } from '$lib/types';
4
  import { PipelineMode } from '$lib/types';
5
  import ImagePlayer from '$lib/components/ImagePlayer.svelte';
6
  import VideoInput from '$lib/components/VideoInput.svelte';
@@ -11,8 +11,9 @@
11
  import { mediaStreamActions, onFrameChangeStore } from '$lib/mediaStream';
12
  import { getPipelineValues, deboucedPipelineValues } from '$lib/store';
13
 
14
- let pipelineParams: FieldProps[];
15
  let pipelineInfo: PipelineInfo;
 
16
  let isImageMode: boolean = false;
17
  let maxQueueSize: number = 0;
18
  let currentQueueSize: number = 0;
@@ -22,11 +23,12 @@
22
 
23
  async function getSettings() {
24
  const settings = await fetch('/settings').then((r) => r.json());
25
- pipelineParams = Object.values(settings.input_params.properties);
26
  pipelineInfo = settings.info.properties;
27
  isImageMode = pipelineInfo.input_mode.default === PipelineMode.IMAGE;
28
  maxQueueSize = settings.max_queue_size;
29
- pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
 
30
  if (maxQueueSize > 0) {
31
  getQueueSize();
32
  setInterval(() => {
@@ -70,31 +72,9 @@
70
 
71
  <main class="container mx-auto flex max-w-5xl flex-col gap-3 px-4 py-4">
72
  <article class="text-center">
73
- <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
74
- {#if pipelineInfo?.title?.default}
75
- <h3 class="text-xl font-bold">{pipelineInfo?.title?.default}</h3>
76
  {/if}
77
- <p class="text-sm">
78
- This demo showcases
79
- <a
80
- href="https://huggingface.co/blog/lcm_lora"
81
- target="_blank"
82
- class="text-blue-500 underline hover:no-underline">LCM LoRA</a
83
- >
84
- Image to Image pipeline using
85
- <a
86
- href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
87
- target="_blank"
88
- class="text-blue-500 underline hover:no-underline">Diffusers</a
89
- > with a MJPEG stream server.
90
- </p>
91
- <p class="text-sm text-gray-500">
92
- Change the prompt to generate different images, accepts <a
93
- href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
94
- target="_blank"
95
- class="text-blue-500 underline hover:no-underline">Compel</a
96
- > syntax.
97
- </p>
98
  {#if maxQueueSize > 0}
99
  <p class="text-sm">
100
  There are <span id="queue_size" class="font-bold">{currentQueueSize}</span>
@@ -111,7 +91,10 @@
111
  <article class="my-3 grid grid-cols-1 gap-3 sm:grid-cols-2">
112
  {#if isImageMode}
113
  <div class="sm:col-start-1">
114
- <VideoInput></VideoInput>
 
 
 
115
  </div>
116
  {/if}
117
  <div class={isImageMode ? 'sm:col-start-2' : 'col-span-2'}>
 
1
  <script lang="ts">
2
  import { onMount } from 'svelte';
3
+ import type { Fields, PipelineInfo } from '$lib/types';
4
  import { PipelineMode } from '$lib/types';
5
  import ImagePlayer from '$lib/components/ImagePlayer.svelte';
6
  import VideoInput from '$lib/components/VideoInput.svelte';
 
11
  import { mediaStreamActions, onFrameChangeStore } from '$lib/mediaStream';
12
  import { getPipelineValues, deboucedPipelineValues } from '$lib/store';
13
 
14
+ let pipelineParams: Fields;
15
  let pipelineInfo: PipelineInfo;
16
+ let pageContent: string;
17
  let isImageMode: boolean = false;
18
  let maxQueueSize: number = 0;
19
  let currentQueueSize: number = 0;
 
23
 
24
  async function getSettings() {
25
  const settings = await fetch('/settings').then((r) => r.json());
26
+ pipelineParams = settings.input_params.properties;
27
  pipelineInfo = settings.info.properties;
28
  isImageMode = pipelineInfo.input_mode.default === PipelineMode.IMAGE;
29
  maxQueueSize = settings.max_queue_size;
30
+ pageContent = settings.page_content;
31
+ console.log(pipelineParams);
32
  if (maxQueueSize > 0) {
33
  getQueueSize();
34
  setInterval(() => {
 
72
 
73
  <main class="container mx-auto flex max-w-5xl flex-col gap-3 px-4 py-4">
74
  <article class="text-center">
75
+ {#if pageContent}
76
+ {@html pageContent}
 
77
  {/if}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  {#if maxQueueSize > 0}
79
  <p class="text-sm">
80
  There are <span id="queue_size" class="font-bold">{currentQueueSize}</span>
 
91
  <article class="my-3 grid grid-cols-1 gap-3 sm:grid-cols-2">
92
  {#if isImageMode}
93
  <div class="sm:col-start-1">
94
+ <VideoInput
95
+ width={Number(pipelineParams.width.default)}
96
+ height={Number(pipelineParams.height.default)}
97
+ ></VideoInput>
98
  </div>
99
  {/if}
100
  <div class={isImageMode ? 'sm:col-start-2' : 'col-span-2'}>
frontend/tailwind.config.js CHANGED
@@ -1,6 +1,6 @@
1
  /** @type {import('tailwindcss').Config} */
2
  export default {
3
- content: ['./src/**/*.{html,js,svelte,ts}'],
4
  theme: {
5
  extend: {}
6
  },
 
1
  /** @type {import('tailwindcss').Config} */
2
  export default {
3
+ content: ['./src/**/*.{html,js,svelte,ts}', '../pipelines/**/*.py'],
4
  theme: {
5
  extend: {}
6
  },
pipelines/controlnet.py CHANGED
@@ -22,6 +22,31 @@ taesd_model = "madebyollin/taesd"
22
  controlnet_model = "lllyasviel/control_v11p_sd15_canny"
23
 
24
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
 
27
  class Pipeline:
@@ -30,6 +55,7 @@ class Pipeline:
30
  title: str = "LCM + Controlnet"
31
  description: str = "Generates an image from a text prompt"
32
  input_mode: str = "image"
 
33
 
34
  class InputParams(BaseModel):
35
  prompt: str = Field(
 
22
  controlnet_model = "lllyasviel/control_v11p_sd15_canny"
23
 
24
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
25
+ page_content = """
26
+ <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
27
+ <h3 class="text-xl font-bold">LCM + Controlnet Canny</h3>
28
+ <p class="text-sm">
29
+ This demo showcases
30
+ <a
31
+ href="https://huggingface.co/blog/lcm_lora"
32
+ target="_blank"
33
+ class="text-blue-500 underline hover:no-underline">LCM LoRA</a
34
+ >
35
+ ControlNet + Image to Image pipeline using
36
+ <a
37
+ href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
38
+ target="_blank"
39
+ class="text-blue-500 underline hover:no-underline">Diffusers</a
40
+ > with a MJPEG stream server.
41
+ </p>
42
+ <p class="text-sm text-gray-500">
43
+ Change the prompt to generate different images, accepts <a
44
+ href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
45
+ target="_blank"
46
+ class="text-blue-500 underline hover:no-underline">Compel</a
47
+ > syntax.
48
+ </p>
49
+ """
50
 
51
 
52
  class Pipeline:
 
55
  title: str = "LCM + Controlnet"
56
  description: str = "Generates an image from a text prompt"
57
  input_mode: str = "image"
58
+ page_content: str = page_content
59
 
60
  class InputParams(BaseModel):
61
  prompt: str = Field(
pipelines/controlnetLoraSD15.py CHANGED
@@ -26,17 +26,40 @@ base_models = {
26
  "nitrosocke/mo-di-diffusion": "modern disney style",
27
  }
28
  lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
29
-
30
-
31
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
 
34
  class Pipeline:
35
  class Info(BaseModel):
36
  name: str = "controlnet+loras+sd15"
37
- title: str = "LCM + LoRA + Controlnet "
38
  description: str = "Generates an image from a text prompt"
39
  input_mode: str = "image"
 
40
 
41
  class InputParams(BaseModel):
42
  prompt: str = Field(
 
26
  "nitrosocke/mo-di-diffusion": "modern disney style",
27
  }
28
  lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
 
 
29
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
30
+ page_content = """
31
+ <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDv1.5</h1>
32
+ <h3 class="text-xl font-bold">LCM + LoRA + Controlnet + Canny</h3>
33
+ <p class="text-sm">
34
+ This demo showcases
35
+ <a
36
+ href="https://huggingface.co/blog/lcm_lora"
37
+ target="_blank"
38
+ class="text-blue-500 underline hover:no-underline">LCM LoRA</a>
39
+ + ControlNet + Image to Imasge pipeline using
40
+ <a
41
+ href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
42
+ target="_blank"
43
+ class="text-blue-500 underline hover:no-underline">Diffusers</a
44
+ > with a MJPEG stream server.
45
+ </p>
46
+ <p class="text-sm text-gray-500">
47
+ Change the prompt to generate different images, accepts <a
48
+ href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
49
+ target="_blank"
50
+ class="text-blue-500 underline hover:no-underline">Compel</a
51
+ > syntax.
52
+ </p>
53
+ """
54
 
55
 
56
  class Pipeline:
57
  class Info(BaseModel):
58
  name: str = "controlnet+loras+sd15"
59
+ title: str = "LCM + LoRA + Controlnet"
60
  description: str = "Generates an image from a text prompt"
61
  input_mode: str = "image"
62
+ page_content: str = page_content
63
 
64
  class InputParams(BaseModel):
65
  prompt: str = Field(
pipelines/controlnetLoraSDXL.py CHANGED
@@ -22,25 +22,42 @@ controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
22
  model_id = "stabilityai/stable-diffusion-xl-base-1.0"
23
  lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
24
 
25
- # # base model with activation token, it will prepend the prompt with the activation token
26
- base_models = {
27
- "plasmo/woolitize": "woolitize",
28
- "nitrosocke/Ghibli-Diffusion": "ghibli style",
29
- "nitrosocke/mo-di-diffusion": "modern disney style",
30
- }
31
- # lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
32
-
33
 
34
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
35
  default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
 
38
  class Pipeline:
39
  class Info(BaseModel):
40
  name: str = "controlnet+loras+sdxl"
41
- title: str = "SDXL + LCM + LoRA + Controlnet "
42
  description: str = "Generates an image from a text prompt"
43
  input_mode: str = "image"
 
44
 
45
  class InputParams(BaseModel):
46
  prompt: str = Field(
@@ -63,10 +80,10 @@ class Pipeline:
63
  4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
64
  )
65
  width: int = Field(
66
- 768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
67
  )
68
  height: int = Field(
69
- 768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
70
  )
71
  guidance_scale: float = Field(
72
  1.0,
 
22
  model_id = "stabilityai/stable-diffusion-xl-base-1.0"
23
  lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
24
 
 
 
 
 
 
 
 
 
25
 
26
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
27
  default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
28
+ page_content = """
29
+ <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDXL</h1>
30
+ <h3 class="text-xl font-bold">SDXL + LCM + LoRA + Controlnet</h3>
31
+ <p class="text-sm">
32
+ This demo showcases
33
+ <a
34
+ href="https://huggingface.co/blog/lcm_lora"
35
+ target="_blank"
36
+ class="text-blue-500 underline hover:no-underline">LCM LoRA</a>
37
+ + SDXL + Controlnet + Image to Image pipeline using
38
+ <a
39
+ href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
40
+ target="_blank"
41
+ class="text-blue-500 underline hover:no-underline">Diffusers</a
42
+ > with a MJPEG stream server.
43
+ </p>
44
+ <p class="text-sm text-gray-500">
45
+ Change the prompt to generate different images, accepts <a
46
+ href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
47
+ target="_blank"
48
+ class="text-blue-500 underline hover:no-underline">Compel</a
49
+ > syntax.
50
+ </p>
51
+ """
52
 
53
 
54
  class Pipeline:
55
  class Info(BaseModel):
56
  name: str = "controlnet+loras+sdxl"
57
+ title: str = "SDXL + LCM + LoRA + Controlnet"
58
  description: str = "Generates an image from a text prompt"
59
  input_mode: str = "image"
60
+ page_content: str = page_content
61
 
62
  class InputParams(BaseModel):
63
  prompt: str = Field(
 
80
  4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
81
  )
82
  width: int = Field(
83
+ 1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
84
  )
85
  height: int = Field(
86
+ 1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
87
  )
88
  guidance_scale: float = Field(
89
  1.0,
pipelines/img2img.py CHANGED
@@ -19,6 +19,30 @@ base_model = "SimianLuo/LCM_Dreamshaper_v7"
19
  taesd_model = "madebyollin/taesd"
20
 
21
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
 
24
  class Pipeline:
@@ -27,6 +51,7 @@ class Pipeline:
27
  title: str = "Image-to-Image LCM"
28
  description: str = "Generates an image from a text prompt"
29
  input_mode: str = "image"
 
30
 
31
  class InputParams(BaseModel):
32
  prompt: str = Field(
 
19
  taesd_model = "madebyollin/taesd"
20
 
21
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
22
+ page_content = """
23
+ <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
24
+ <h3 class="text-xl font-bold">Image-to-Image LCM</h3>
25
+ <p class="text-sm">
26
+ This demo showcases
27
+ <a
28
+ href="https://huggingface.co/blog/lcm_lora"
29
+ target="_blank"
30
+ class="text-blue-500 underline hover:no-underline">LCM</a>
31
+ Image to Image pipeline using
32
+ <a
33
+ href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
34
+ target="_blank"
35
+ class="text-blue-500 underline hover:no-underline">Diffusers</a
36
+ > with a MJPEG stream server.
37
+ </p>
38
+ <p class="text-sm text-gray-500">
39
+ Change the prompt to generate different images, accepts <a
40
+ href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
41
+ target="_blank"
42
+ class="text-blue-500 underline hover:no-underline">Compel</a
43
+ > syntax.
44
+ </p>
45
+ """
46
 
47
 
48
  class Pipeline:
 
51
  title: str = "Image-to-Image LCM"
52
  description: str = "Generates an image from a text prompt"
53
  input_mode: str = "image"
54
+ page_content: str = page_content
55
 
56
  class InputParams(BaseModel):
57
  prompt: str = Field(
pipelines/txt2img.py CHANGED
@@ -17,6 +17,28 @@ taesd_model = "madebyollin/taesd"
17
 
18
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  class Pipeline:
22
  class Info(BaseModel):
@@ -24,6 +46,7 @@ class Pipeline:
24
  title: str = "Text-to-Image LCM"
25
  description: str = "Generates an image from a text prompt"
26
  input_mode: str = "text"
 
27
 
28
  class InputParams(BaseModel):
29
  prompt: str = Field(
 
17
 
18
  default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
19
 
20
+ page_content = """<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
21
+ <h3 class="text-xl font-bold">Text-to-Image</h3>
22
+ <p class="text-sm">
23
+ This demo showcases
24
+ <a
25
+ href="https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7"
26
+ target="_blank"
27
+ class="text-blue-500 underline hover:no-underline">LCM</a>
28
+ Image to Image pipeline using
29
+ <a
30
+ href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
31
+ target="_blank"
32
+ class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG stream server
33
+ </p>
34
+ <p class="text-sm text-gray-500">
35
+ Change the prompt to generate different images, accepts <a
36
+ href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
37
+ target="_blank"
38
+ class="text-blue-500 underline hover:no-underline">Compel</a
39
+ > syntax.
40
+ </p>"""
41
+
42
 
43
  class Pipeline:
44
  class Info(BaseModel):
 
46
  title: str = "Text-to-Image LCM"
47
  description: str = "Generates an image from a text prompt"
48
  input_mode: str = "text"
49
+ page_content: str = page_content
50
 
51
  class InputParams(BaseModel):
52
  prompt: str = Field(
pipelines/txt2imgLora.py CHANGED
@@ -18,6 +18,34 @@ taesd_model = "madebyollin/taesd"
18
 
19
  default_prompt = "Analog style photograph of young Harrison Ford as Han Solo, star wars behind the scenes"
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  class Pipeline:
23
  class Info(BaseModel):
@@ -25,6 +53,7 @@ class Pipeline:
25
  title: str = "Text-to-Image LCM + LoRa"
26
  description: str = "Generates an image from a text prompt"
27
  input_mode: str = "text"
 
28
 
29
  class InputParams(BaseModel):
30
  prompt: str = Field(
 
18
 
19
  default_prompt = "Analog style photograph of young Harrison Ford as Han Solo, star wars behind the scenes"
20
 
21
+ page_content = """
22
+ <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDv1.5</h1>
23
+ <h3 class="text-xl font-bold">Text-to-Image LCM + LoRa</h3>
24
+ <p class="text-sm">
25
+ This demo showcases
26
+ <a
27
+ href="https://huggingface.co/blog/lcm_lora"
28
+ target="_blank"
29
+ class="text-blue-500 underline hover:no-underline">LCM</a>
30
+ Image to Image pipeline using
31
+ <a
32
+ href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
33
+ target="_blank"
34
+ class="text-blue-500 underline hover:no-underline">Diffusers</a
35
+ > with a MJPEG stream server. Featuring <a
36
+ href="https://huggingface.co/wavymulder/Analog-Diffusion"
37
+ target="_blank"
38
+ class="text-blue-500 underline hover:no-underline">Analog-Diffusion</a>
39
+ </p>
40
+ <p class="text-sm text-gray-500">
41
+ Change the prompt to generate different images, accepts <a
42
+ href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
43
+ target="_blank"
44
+ class="text-blue-500 underline hover:no-underline">Compel</a
45
+ > syntax.
46
+ </p>
47
+ """
48
+
49
 
50
  class Pipeline:
51
  class Info(BaseModel):
 
53
  title: str = "Text-to-Image LCM + LoRa"
54
  description: str = "Generates an image from a text prompt"
55
  input_mode: str = "text"
56
+ page_content: str = page_content
57
 
58
  class InputParams(BaseModel):
59
  prompt: str = Field(
pipelines/txt2imgLoraSDXL.py CHANGED
@@ -23,6 +23,31 @@ lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
23
 
24
  default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
25
  default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
 
28
  class Pipeline:
@@ -30,6 +55,7 @@ class Pipeline:
30
  name: str = "LCM+Lora+SDXL"
31
  title: str = "Text-to-Image SDXL + LCM + LoRA"
32
  description: str = "Generates an image from a text prompt"
 
33
  input_mode: str = "text"
34
 
35
  class InputParams(BaseModel):
 
23
 
24
  default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
25
  default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
26
+ page_content = """
27
+ <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
28
+ <h3 class="text-xl font-bold">Text-to-Image SDXL + LCM + LoRA</h3>
29
+ <p class="text-sm">
30
+ This demo showcases
31
+ <a
32
+ href="https://huggingface.co/blog/lcm_lora"
33
+ target="_blank"
34
+ class="text-blue-500 underline hover:no-underline">LCM LoRA</a
35
+ >
36
+ Text to Image pipeline using
37
+ <a
38
+ href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
39
+ target="_blank"
40
+ class="text-blue-500 underline hover:no-underline">Diffusers</a
41
+ > with a MJPEG stream server.
42
+ </p>
43
+ <p class="text-sm text-gray-500">
44
+ Change the prompt to generate different images, accepts <a
45
+ href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
46
+ target="_blank"
47
+ class="text-blue-500 underline hover:no-underline">Compel</a
48
+ > syntax.
49
+ </p>
50
+ """
51
 
52
 
53
  class Pipeline:
 
55
  name: str = "LCM+Lora+SDXL"
56
  title: str = "Text-to-Image SDXL + LCM + LoRA"
57
  description: str = "Generates an image from a text prompt"
58
+ page_content: str = page_content
59
  input_mode: str = "text"
60
 
61
  class InputParams(BaseModel):
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- git+https://github.com/huggingface/diffusers@6f1435332bc74e286af5e88014236e4cc712b747
2
  transformers==4.35.2
3
  --extra-index-url https://download.pytorch.org/whl/cu121;
4
  torch==2.1.0
@@ -9,4 +9,5 @@ accelerate==0.24.0
9
  compel==2.0.2
10
  controlnet-aux==0.0.7
11
  peft==0.6.0
12
- xformers; sys_platform != 'darwin' or platform_machine != 'arm64'
 
 
1
+ git+https://github.com/huggingface/diffusers@141cd52d56f31a8653795e14d29a87071788dc15
2
  transformers==4.35.2
3
  --extra-index-url https://download.pytorch.org/whl/cu121;
4
  torch==2.1.0
 
9
  compel==2.0.2
10
  controlnet-aux==0.0.7
11
  peft==0.6.0
12
+ xformers; sys_platform != 'darwin' or platform_machine != 'arm64'
13
+ markdown2