mergekit / app.py
Hjgugugjhuhjggg's picture
Update app.py
2a7f249 verified
import os
import pathlib
import random
import string
import tempfile
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List
import gradio as gr
import huggingface_hub
import torch
import yaml
from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
from mergekit.config import MergeConfiguration
from clean_community_org import garbage_collect_empty_models
has_gpu = torch.cuda.is_available()
cli = "mergekit-yaml config.yaml merge --copy-tokenizer" + (
" --cuda --low-cpu-memory --allow-crimes" if has_gpu else " --allow-crimes --out-shard-size 1B --lazy-unpickle"
)
MARKDOWN_DESCRIPTION = """
# mergekit-gui
The fastest way to perform a model merge 🔥
Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile.
"""
MARKDOWN_ARTICLE = """
___
## Merge Configuration
[Mergekit](https://github.com/arcee-ai/mergekit) configurations are YAML documents specifying the operations to perform in order to produce your merged model.
Below are the primary elements of a configuration file:
- `merge_method`: Specifies the method to use for merging models. See [Merge Methods](https://github.com/arcee-ai/mergekit#merge-methods) for a list.
- `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
- `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
- `base_model`: Specifies the base model used in some merging methods.
- `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
- `dtype`: Specifies the data type used for the merging operation.
- `tokenizer_source`: Determines how to construct a tokenizer for the merged model.
## Merge Methods
A quick overview of the currently supported merge methods:
| Method | `merge_method` value | Multi-Model | Uses base model |
| -------------------------------------------------------------------------------------------- | -------------------- | ----------- | --------------- |
| Linear ([Model Soups](https://arxiv.org/abs/2203.05482)) | `linear` | ✅ | ❌ |
| SLERP | `slerp` | ❌ | ✅ |
| [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `task_arithmetic` | ✅ | ✅ |
| [TIES](https://arxiv.org/abs/2306.01708) | `ties` | ✅ | ✅ |
| [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) | `dare_ties` | ✅ | ✅ |
| [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear` | ✅ | ✅ |
| Passthrough | `passthrough` | ❌ | ❌ |
| [Model Stock](https://arxiv.org/abs/2403.19522) | `model_stock` | ✅ | ✅ |
## Citation
This GUI is powered by [Arcee's MergeKit](https://arxiv.org/abs/2403.13257).
If you use it in your research, please cite the following paper:
@article{goddard2024arcee,
title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
journal={arXiv preprint arXiv:2403.13257},
year={2024}
}
This Space is heavily inspired by LazyMergeKit by Maxime Labonne (see [Colab](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb)).
"""
examples = [[str(f)] for f in pathlib.Path("examples").glob("*.yaml")]
COMMUNITY_HF_TOKEN = os.getenv("COMMUNITY_HF_TOKEN")
def merge_multiple_methods(yaml_config: str, hf_token: str, repo_name: str, profile_name: str) -> Iterable[List[Log]]:
runner = LogsViewRunner()
if not yaml_config:
yield runner.log("Empty yaml, pick an example below", level="ERROR")
return
try:
merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
except Exception as e:
yield runner.log(f"Invalid yaml {e}", level="ERROR")
return
methods_to_merge = ['dare_ties', 'ties']
current_yaml_config = yaml_config
merged_model_path = None
for method in methods_to_merge:
yield from run_merge_for_method(method, current_yaml_config, hf_token, repo_name, profile_name, runner)
current_yaml_config = get_merged_yaml(current_yaml_config, method)
yield runner.log(f"Model merged with {method}. Proceeding to next method...")
merged_model_path = "final_merged_model" # Placeholder, adjust based on your process
if merged_model_path:
yield runner.log(f"Model successfully merged using all methods. Saving unified model to {merged_model_path}")
# Save final YAML
example_yaml = generate_example_yaml(methods_to_merge)
yield runner.log(f"Generated example YAML: {example_yaml}")
# Here, you could potentially upload the final merged model
# Upload logic goes here if needed
def get_merged_yaml(original_yaml: str, method: str) -> str:
yaml_data = yaml.safe_load(original_yaml)
yaml_data['merge_method'] = method
return yaml.dump(yaml_data)
def run_merge_for_method(method: str, yaml_config: str, hf_token: str, repo_name: str, profile_name: str, runner: LogsViewRunner):
yaml_data = yaml.safe_load(yaml_config)
yaml_data['merge_method'] = method
new_yaml_config = yaml.dump(yaml_data)
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
tmpdir = pathlib.Path(tmpdirname)
merged_path = tmpdir / "merged"
merged_path.mkdir(parents=True, exist_ok=True)
config_path = merged_path / "config.yaml"
config_path.write_text(new_yaml_config)
yield runner.log(f"Merge configuration saved for {method} in {config_path}")
if not repo_name:
repo_name = f"{profile_name}/mergekit-{method}" if profile_name else f"mergekit-{method}"
repo_name += "-" + "".join(random.choices(string.ascii_lowercase, k=7))
repo_name = repo_name.replace("/", "-").strip("-")
try:
yield runner.log(f"Creating repo for {method} {repo_name}")
repo_url = huggingface_hub.HfApi(token=hf_token).create_repo(repo_name, exist_ok=True)
yield runner.log(f"Repo created for {method}: {repo_url}")
except Exception as e:
yield runner.log(f"Error creating repo for {method}: {e}", level="ERROR")
return
tmp_env = os.environ.copy()
tmp_env["HF_HOME"] = f"{tmpdirname}/.cache"
full_cli = cli + f" --lora-merge-cache {tmpdirname}/.lora_cache"
yield from runner.run_command(full_cli.split(), cwd=merged_path, env=tmp_env)
if runner.exit_code != 0:
yield runner.log(f"Merge for {method} failed. Deleting repo as no model is uploaded.", level="ERROR")
huggingface_hub.HfApi(token=hf_token).delete_repo(repo_url.repo_id)
return
yield runner.log(f"Model merged with {method}. Uploading to HF.")
yield from runner.run_python(
huggingface_hub.HfApi(token=hf_token).upload_folder,
repo_id=repo_url.repo_id,
folder_path=merged_path / "merge",
)
yield runner.log(f"Model successfully uploaded to HF with {method}: {repo_url.repo_id}")
def generate_example_yaml(methods: List[str]) -> str:
"""Genera un archivo YAML de ejemplo que refleja la secuencia de métodos de fusión aplicados"""
example_yaml = {
'merge_method': 'linear', # O el método final que decidas usar
'models': ['model1', 'model2', 'model3'], # Ejemplo de modelos a fusionar
'slices': None, # Puedes agregar slices si es necesario
'parameters': {
'normalize': False,
'weight': 0.5
},
'tokenizer_source': 'union', # Definir el tokenizer
}
example_yaml['merge_method_sequence'] = methods
return yaml.dump(example_yaml)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN_DESCRIPTION)
with gr.Row():
filename = gr.Textbox(visible=False, label="filename")
config = gr.Code(language="yaml", lines=10, label="config.yaml")
with gr.Column():
token = gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token",
type="password",
placeholder="Optional. Will upload merged model to MergeKit Community if empty.",
)
repo_name = gr.Textbox(
lines=1,
label="Repo name",
placeholder="Optional. Will create a random name if empty.",
)
profile_name = gr.Textbox(
lines=1,
label="Hugging Face Profile Name",
placeholder="Enter your Hugging Face profile name.",
)
button = gr.Button("Merge", variant="primary")
logs = LogsView(label="Terminal output")
gr.Examples(
examples,
fn=lambda s: (s,),
run_on_click=True,
label="Examples",
inputs=[filename],
outputs=[config],
)
gr.Markdown(MARKDOWN_ARTICLE)
button.click(fn=merge_multiple_methods, inputs=[config, token, repo_name, profile_name], outputs=[logs])
def _garbage_collect_every_hour():
while True:
try:
garbage_collect_empty_models(token=COMMUNITY_HF_TOKEN)
except Exception as e:
print("Error running garbage collection", e)
time.sleep(3600)
pool = ThreadPoolExecutor()
pool.submit(_garbage_collect_every_hour)
demo.queue(default_concurrency_limit=2).launch()