import argparse import pprint from collections import Counter, defaultdict from itertools import chain from pathlib import Path from types import SimpleNamespace from typing import Dict, Iterable, List, Optional, Set, Tuple, Union import cv2 import h5py import numpy as np import torch import torchvision.transforms.functional as F from scipy.spatial import KDTree from tqdm import tqdm from . import logger, matchers from .extract_features import read_image, resize_image from .match_features import find_unique_new_pairs from .utils.base_model import dynamic_load from .utils.io import list_h5_names from .utils.parsers import names_to_pair, parse_retrieval device = "cuda" if torch.cuda.is_available() else "cpu" confs = { # Best quality but loads of points. Only use for small scenes "loftr": { "output": "matches-loftr", "model": { "name": "loftr", "weights": "outdoor", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "resize_max": 1024, "dfactor": 8, "width": 640, "height": 480, "force_resize": False, }, "max_error": 1, # max error for assigned keypoints (in px) "cell_size": 1, # size of quantization patch (max 1 kp/patch) }, "minima_loftr": { "output": "matches-minima_loftr", "model": { "name": "loftr", "weights": "minima_loftr_outdoor", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "resize_max": 1024, "dfactor": 8, "width": 640, "height": 480, "force_resize": False, }, "max_error": 1, # max error for assigned keypoints (in px) "cell_size": 1, # size of quantization patch (max 1 kp/patch) }, "eloftr": { "output": "matches-eloftr", "model": { "name": "eloftr", "weights": "weights/eloftr_outdoor.ckpt", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "resize_max": 1024, "dfactor": 32, "width": 640, "height": 480, "force_resize": True, }, "max_error": 1, # max error for assigned keypoints (in px) "cell_size": 1, # size of quantization patch (max 1 kp/patch) }, "xoftr": { "output": "matches-xoftr", "model": { "name": "xoftr", "weights": "weights_xoftr_640.ckpt", "max_keypoints": 2000, "match_threshold": 0.3, }, "preprocessing": { "grayscale": True, "resize_max": 1024, "dfactor": 8, "width": 640, "height": 480, "force_resize": True, }, "max_error": 1, # max error for assigned keypoints (in px) "cell_size": 1, # size of quantization patch (max 1 kp/patch) }, # "loftr_quadtree": { # "output": "matches-loftr-quadtree", # "model": { # "name": "quadtree", # "weights": "outdoor", # "max_keypoints": 2000, # "match_threshold": 0.2, # }, # "preprocessing": { # "grayscale": True, # "resize_max": 1024, # "dfactor": 8, # "width": 640, # "height": 480, # "force_resize": True, # }, # "max_error": 1, # max error for assigned keypoints (in px) # "cell_size": 1, # size of quantization patch (max 1 kp/patch) # }, "cotr": { "output": "matches-cotr", "model": { "name": "cotr", "weights": "out/default", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": False, "resize_max": 1024, "dfactor": 8, "width": 640, "height": 480, "force_resize": True, }, "max_error": 1, # max error for assigned keypoints (in px) "cell_size": 1, # size of quantization patch (max 1 kp/patch) }, # Semi-scalable loftr which limits detected keypoints "loftr_aachen": { "output": "matches-loftr_aachen", "model": { "name": "loftr", "weights": "outdoor", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "resize_max": 1024, "dfactor": 8, "width": 640, "height": 480, "force_resize": True, }, "max_error": 2, # max error for assigned keypoints (in px) "cell_size": 8, # size of quantization patch (max 1 kp/patch) }, # Use for matching superpoint feats with loftr "loftr_superpoint": { "output": "matches-loftr_aachen", "model": { "name": "loftr", "weights": "outdoor", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "resize_max": 1024, "dfactor": 8, "width": 640, "height": 480, "force_resize": True, }, "max_error": 4, # max error for assigned keypoints (in px) "cell_size": 4, # size of quantization patch (max 1 kp/patch) }, # Use topicfm for matching feats "topicfm": { "output": "matches-topicfm", "model": { "name": "topicfm", "weights": "outdoor", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "force_resize": True, "resize_max": 1024, "dfactor": 8, "width": 640, "height": 480, }, }, # Use aspanformer for matching feats "aspanformer": { "output": "matches-aspanformer", "model": { "name": "aspanformer", "weights": "outdoor", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "force_resize": True, "resize_max": 1024, "width": 640, "height": 480, "dfactor": 8, }, }, "duster": { "output": "matches-duster", "model": { "name": "duster", "weights": "vit_large", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": False, "resize_max": 512, "dfactor": 16, }, }, "mast3r": { "output": "matches-mast3r", "model": { "name": "mast3r", "weights": "vit_large", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": False, "resize_max": 512, "dfactor": 16, }, }, "xfeat_lightglue": { "output": "matches-xfeat_lightglue", "model": { "name": "xfeat_lightglue", "max_keypoints": 8000, }, "preprocessing": { "grayscale": False, "force_resize": False, "resize_max": 1024, "width": 640, "height": 480, "dfactor": 8, }, }, "xfeat_dense": { "output": "matches-xfeat_dense", "model": { "name": "xfeat_dense", "max_keypoints": 8000, }, "preprocessing": { "grayscale": False, "force_resize": False, "resize_max": 1024, "width": 640, "height": 480, "dfactor": 8, }, }, "dkm": { "output": "matches-dkm", "model": { "name": "dkm", "weights": "outdoor", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": False, "force_resize": True, "resize_max": 1024, "width": 80, "height": 60, "dfactor": 8, }, }, "roma": { "output": "matches-roma", "model": { "name": "roma", "weights": "outdoor", "model_name": "roma_outdoor.pth", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": False, "force_resize": False, "resize_max": 1024, "width": 320, "height": 240, "dfactor": 8, }, }, "minima_roma": { "output": "matches-minima_roma", "model": { "name": "roma", "weights": "outdoor", "model_name": "minima_roma_outdoor.pth", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": False, "force_resize": False, "resize_max": 1024, "width": 320, "height": 240, "dfactor": 8, }, }, "gim(dkm)": { "output": "matches-gim", "model": { "name": "gim", "model_name": "gim_dkm_100h.ckpt", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": False, "force_resize": True, "resize_max": 1024, "width": 320, "height": 240, "dfactor": 8, }, }, "omniglue": { "output": "matches-omniglue", "model": { "name": "omniglue", "match_threshold": 0.2, "max_keypoints": 2000, "features": "null", }, "preprocessing": { "grayscale": False, "resize_max": 1024, "dfactor": 8, "force_resize": False, "resize_max": 1024, "width": 640, "height": 480, "dfactor": 8, }, }, "sold2": { "output": "matches-sold2", "model": { "name": "sold2", "max_keypoints": 2000, "match_threshold": 0.2, }, "preprocessing": { "grayscale": True, "force_resize": True, "resize_max": 1024, "width": 640, "height": 480, "dfactor": 8, }, }, "gluestick": { "output": "matches-gluestick", "model": { "name": "gluestick", "use_lines": True, "max_keypoints": 1000, "max_lines": 300, "force_num_keypoints": False, }, "preprocessing": { "grayscale": True, "force_resize": True, "resize_max": 1024, "width": 640, "height": 480, "dfactor": 8, }, }, } def to_cpts(kpts, ps): if ps > 0.0: kpts = np.round(np.round((kpts + 0.5) / ps) * ps - 0.5, 2) return [tuple(cpt) for cpt in kpts] def assign_keypoints( kpts: np.ndarray, other_cpts: Union[List[Tuple], np.ndarray], max_error: float, update: bool = False, ref_bins: Optional[List[Counter]] = None, scores: Optional[np.ndarray] = None, cell_size: Optional[int] = None, ): if not update: # Without update this is just a NN search if len(other_cpts) == 0 or len(kpts) == 0: return np.full(len(kpts), -1) dist, kpt_ids = KDTree(np.array(other_cpts)).query(kpts) valid = dist <= max_error kpt_ids[~valid] = -1 return kpt_ids else: ps = cell_size if cell_size is not None else max_error ps = max(ps, max_error) # With update we quantize and bin (optionally) assert isinstance(other_cpts, list) kpt_ids = [] cpts = to_cpts(kpts, ps) bpts = to_cpts(kpts, int(max_error)) cp_to_id = {val: i for i, val in enumerate(other_cpts)} for i, (cpt, bpt) in enumerate(zip(cpts, bpts)): try: kid = cp_to_id[cpt] except KeyError: kid = len(cp_to_id) cp_to_id[cpt] = kid other_cpts.append(cpt) if ref_bins is not None: ref_bins.append(Counter()) if ref_bins is not None: score = scores[i] if scores is not None else 1 ref_bins[cp_to_id[cpt]][bpt] += score kpt_ids.append(kid) return np.array(kpt_ids) def get_grouped_ids(array): # Group array indices based on its values # all duplicates are grouped as a set idx_sort = np.argsort(array) sorted_array = array[idx_sort] _, ids, _ = np.unique(sorted_array, return_counts=True, return_index=True) res = np.split(idx_sort, ids[1:]) return res def get_unique_matches(match_ids, scores): if len(match_ids.shape) == 1: return [0] isets1 = get_grouped_ids(match_ids[:, 0]) isets2 = get_grouped_ids(match_ids[:, 1]) uid1s = [ids[scores[ids].argmax()] for ids in isets1 if len(ids) > 0] uid2s = [ids[scores[ids].argmax()] for ids in isets2 if len(ids) > 0] uids = list(set(uid1s).intersection(uid2s)) return match_ids[uids], scores[uids] def matches_to_matches0(matches, scores): if len(matches) == 0: return np.zeros(0, dtype=np.int32), np.zeros(0, dtype=np.float16) n_kps0 = np.max(matches[:, 0]) + 1 matches0 = -np.ones((n_kps0,)) scores0 = np.zeros((n_kps0,)) matches0[matches[:, 0]] = matches[:, 1] scores0[matches[:, 0]] = scores return matches0.astype(np.int32), scores0.astype(np.float16) def kpids_to_matches0(kpt_ids0, kpt_ids1, scores): valid = (kpt_ids0 != -1) & (kpt_ids1 != -1) matches = np.dstack([kpt_ids0[valid], kpt_ids1[valid]]) matches = matches.reshape(-1, 2) scores = scores[valid] # Remove n-to-1 matches matches, scores = get_unique_matches(matches, scores) return matches_to_matches0(matches, scores) def scale_keypoints(kpts, scale): if np.any(scale != 1.0): kpts *= kpts.new_tensor(scale) return kpts class ImagePairDataset(torch.utils.data.Dataset): default_conf = { "grayscale": True, "resize_max": 1024, "dfactor": 8, "cache_images": False, } def __init__(self, image_dir, conf, pairs): self.image_dir = image_dir self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf}) self.pairs = pairs if self.conf.cache_images: image_names = set(sum(pairs, ())) # unique image names in pairs logger.info( f"Loading and caching {len(image_names)} unique images." ) self.images = {} self.scales = {} for name in tqdm(image_names): image = read_image(self.image_dir / name, self.conf.grayscale) self.images[name], self.scales[name] = self.preprocess(image) def preprocess(self, image: np.ndarray): image = image.astype(np.float32, copy=False) size = image.shape[:2][::-1] scale = np.array([1.0, 1.0]) if self.conf.resize_max: scale = self.conf.resize_max / max(size) if scale < 1.0: size_new = tuple(int(round(x * scale)) for x in size) image = resize_image(image, size_new, "cv2_area") scale = np.array(size) / np.array(size_new) if self.conf.grayscale: assert image.ndim == 2, image.shape image = image[None] else: image = image.transpose((2, 0, 1)) # HxWxC to CxHxW image = torch.from_numpy(image / 255.0).float() # assure that the size is divisible by dfactor size_new = tuple( map( lambda x: int(x // self.conf.dfactor * self.conf.dfactor), image.shape[-2:], ) ) image = F.resize(image, size=size_new) scale = np.array(size) / np.array(size_new)[::-1] return image, scale def __len__(self): return len(self.pairs) def __getitem__(self, idx): name0, name1 = self.pairs[idx] if self.conf.cache_images: image0, scale0 = self.images[name0], self.scales[name0] image1, scale1 = self.images[name1], self.scales[name1] else: image0 = read_image(self.image_dir / name0, self.conf.grayscale) image1 = read_image(self.image_dir / name1, self.conf.grayscale) image0, scale0 = self.preprocess(image0) image1, scale1 = self.preprocess(image1) return image0, image1, scale0, scale1, name0, name1 @torch.no_grad() def match_dense( conf: Dict, pairs: List[Tuple[str, str]], image_dir: Path, match_path: Path, # out existing_refs: Optional[List] = [], ): device = "cuda" if torch.cuda.is_available() else "cpu" Model = dynamic_load(matchers, conf["model"]["name"]) model = Model(conf["model"]).eval().to(device) dataset = ImagePairDataset(image_dir, conf["preprocessing"], pairs) loader = torch.utils.data.DataLoader( dataset, num_workers=16, batch_size=1, shuffle=False ) logger.info("Performing dense matching...") with h5py.File(str(match_path), "a") as fd: for data in tqdm(loader, smoothing=0.1): # load image-pair data image0, image1, scale0, scale1, (name0,), (name1,) = data scale0, scale1 = scale0[0].numpy(), scale1[0].numpy() image0, image1 = image0.to(device), image1.to(device) # match semi-dense # for consistency with pairs_from_*: refine kpts of image0 if name0 in existing_refs: # special case: flip to enable refinement in query image pred = model({"image0": image1, "image1": image0}) pred = { **pred, "keypoints0": pred["keypoints1"], "keypoints1": pred["keypoints0"], } else: # usual case pred = model({"image0": image0, "image1": image1}) # Rescale keypoints and move to cpu kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"] kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5 kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5 kpts0 = kpts0.cpu().numpy() kpts1 = kpts1.cpu().numpy() scores = pred["scores"].cpu().numpy() # Write matches and matching scores in hloc format pair = names_to_pair(name0, name1) if pair in fd: del fd[pair] grp = fd.create_group(pair) # Write dense matching output grp.create_dataset("keypoints0", data=kpts0) grp.create_dataset("keypoints1", data=kpts1) grp.create_dataset("scores", data=scores) del model, loader # default: quantize all! def load_keypoints( conf: Dict, feature_paths_refs: List[Path], quantize: Optional[set] = None ): name2ref = { n: i for i, p in enumerate(feature_paths_refs) for n in list_h5_names(p) } existing_refs = set(name2ref.keys()) if quantize is None: quantize = existing_refs # quantize all if len(existing_refs) > 0: logger.info(f"Loading keypoints from {len(existing_refs)} images.") # Load query keypoints cpdict = defaultdict(list) bindict = defaultdict(list) for name in existing_refs: with h5py.File(str(feature_paths_refs[name2ref[name]]), "r") as fd: kps = fd[name]["keypoints"].__array__() if name not in quantize: cpdict[name] = kps else: if "scores" in fd[name].keys(): kp_scores = fd[name]["scores"].__array__() else: # we set the score to 1.0 if not provided # increase for more weight on reference keypoints for # stronger anchoring kp_scores = [1.0 for _ in range(kps.shape[0])] # bin existing keypoints of reference images for association assign_keypoints( kps, cpdict[name], conf["max_error"], True, bindict[name], kp_scores, conf["cell_size"], ) return cpdict, bindict def aggregate_matches( conf: Dict, pairs: List[Tuple[str, str]], match_path: Path, feature_path: Path, required_queries: Optional[Set[str]] = None, max_kps: Optional[int] = None, cpdict: Dict[str, Iterable] = defaultdict(list), bindict: Dict[str, List[Counter]] = defaultdict(list), ): if required_queries is None: required_queries = set(sum(pairs, ())) # default: do not overwrite existing features in feature_path! required_queries -= set(list_h5_names(feature_path)) # if an entry in cpdict is provided as np.ndarray we assume it is fixed required_queries -= set( [k for k, v in cpdict.items() if isinstance(v, np.ndarray)] ) # sort pairs for reduced RAM pairs_per_q = Counter(list(chain(*pairs))) pairs_score = [min(pairs_per_q[i], pairs_per_q[j]) for i, j in pairs] pairs = [p for _, p in sorted(zip(pairs_score, pairs))] if len(required_queries) > 0: logger.info( f"Aggregating keypoints for {len(required_queries)} images." ) n_kps = 0 with h5py.File(str(match_path), "a") as fd: for name0, name1 in tqdm(pairs, smoothing=0.1): pair = names_to_pair(name0, name1) grp = fd[pair] kpts0 = grp["keypoints0"].__array__() kpts1 = grp["keypoints1"].__array__() scores = grp["scores"].__array__() # Aggregate local features update0 = name0 in required_queries update1 = name1 in required_queries # in localization we do not want to bin the query kp # assumes that the query is name0! if update0 and not update1 and max_kps is None: max_error0 = cell_size0 = 0.0 else: max_error0 = conf["max_error"] cell_size0 = conf["cell_size"] # Get match ids and extend query keypoints (cpdict) mkp_ids0 = assign_keypoints( kpts0, cpdict[name0], max_error0, update0, bindict[name0], scores, cell_size0, ) mkp_ids1 = assign_keypoints( kpts1, cpdict[name1], conf["max_error"], update1, bindict[name1], scores, conf["cell_size"], ) # Build matches from assignments matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores) assert kpts0.shape[0] == scores.shape[0] grp.create_dataset("matches0", data=matches0) grp.create_dataset("matching_scores0", data=scores0) # Convert bins to kps if finished, and store them for name in (name0, name1): pairs_per_q[name] -= 1 if pairs_per_q[name] > 0 or name not in required_queries: continue kp_score = [c.most_common(1)[0][1] for c in bindict[name]] cpdict[name] = [c.most_common(1)[0][0] for c in bindict[name]] cpdict[name] = np.array(cpdict[name], dtype=np.float32) # Select top-k query kps by score (reassign matches later) if max_kps: top_k = min(max_kps, cpdict[name].shape[0]) top_k = np.argsort(kp_score)[::-1][:top_k] cpdict[name] = cpdict[name][top_k] kp_score = np.array(kp_score)[top_k] # Write query keypoints with h5py.File(feature_path, "a") as kfd: if name in kfd: del kfd[name] kgrp = kfd.create_group(name) kgrp.create_dataset("keypoints", data=cpdict[name]) kgrp.create_dataset("score", data=kp_score) n_kps += cpdict[name].shape[0] del bindict[name] if len(required_queries) > 0: avg_kp_per_image = round(n_kps / len(required_queries), 1) logger.info( f"Finished assignment, found {avg_kp_per_image} " f"keypoints/image (avg.), total {n_kps}." ) return cpdict def assign_matches( pairs: List[Tuple[str, str]], match_path: Path, keypoints: Union[List[Path], Dict[str, np.array]], max_error: float, ): if isinstance(keypoints, list): keypoints = load_keypoints({}, keypoints, kpts_as_bin=set([])) assert len(set(sum(pairs, ())) - set(keypoints.keys())) == 0 with h5py.File(str(match_path), "a") as fd: for name0, name1 in tqdm(pairs): pair = names_to_pair(name0, name1) grp = fd[pair] kpts0 = grp["keypoints0"].__array__() kpts1 = grp["keypoints1"].__array__() scores = grp["scores"].__array__() # NN search across cell boundaries mkp_ids0 = assign_keypoints(kpts0, keypoints[name0], max_error) mkp_ids1 = assign_keypoints(kpts1, keypoints[name1], max_error) matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores) # overwrite matches0 and matching_scores0 del grp["matches0"], grp["matching_scores0"] grp.create_dataset("matches0", data=matches0) grp.create_dataset("matching_scores0", data=scores0) @torch.no_grad() def match_and_assign( conf: Dict, pairs_path: Path, image_dir: Path, match_path: Path, # out feature_path_q: Path, # out feature_paths_refs: Optional[List[Path]] = [], max_kps: Optional[int] = 8192, overwrite: bool = False, ) -> Path: for path in feature_paths_refs: if not path.exists(): raise FileNotFoundError(f"Reference feature file {path}.") pairs = parse_retrieval(pairs_path) pairs = [(q, r) for q, rs in pairs.items() for r in rs] pairs = find_unique_new_pairs(pairs, None if overwrite else match_path) required_queries = set(sum(pairs, ())) name2ref = { n: i for i, p in enumerate(feature_paths_refs) for n in list_h5_names(p) } existing_refs = required_queries.intersection(set(name2ref.keys())) # images which require feature extraction required_queries = required_queries - existing_refs if feature_path_q.exists(): existing_queries = set(list_h5_names(feature_path_q)) feature_paths_refs.append(feature_path_q) existing_refs = set.union(existing_refs, existing_queries) if not overwrite: required_queries = required_queries - existing_queries if len(pairs) == 0 and len(required_queries) == 0: logger.info("All pairs exist. Skipping dense matching.") return # extract semi-dense matches match_dense(conf, pairs, image_dir, match_path, existing_refs=existing_refs) logger.info("Assigning matches...") # Pre-load existing keypoints cpdict, bindict = load_keypoints( conf, feature_paths_refs, quantize=required_queries ) # Reassign matches by aggregation cpdict = aggregate_matches( conf, pairs, match_path, feature_path=feature_path_q, required_queries=required_queries, max_kps=max_kps, cpdict=cpdict, bindict=bindict, ) # Invalidate matches that are far from selected bin by reassignment if max_kps is not None: logger.info(f'Reassign matches with max_error={conf["max_error"]}.') assign_matches(pairs, match_path, cpdict, max_error=conf["max_error"]) def scale_lines(lines, scale): if np.any(scale != 1.0): lines *= lines.new_tensor(scale) return lines def match(model, path_0, path_1, conf): default_conf = { "grayscale": True, "resize_max": 1024, "dfactor": 8, "cache_images": False, "force_resize": False, "width": 320, "height": 240, } def preprocess(image: np.ndarray): image = image.astype(np.float32, copy=False) size = image.shape[:2][::-1] scale = np.array([1.0, 1.0]) if conf.resize_max: scale = conf.resize_max / max(size) if scale < 1.0: size_new = tuple(int(round(x * scale)) for x in size) image = resize_image(image, size_new, "cv2_area") scale = np.array(size) / np.array(size_new) if conf.force_resize: size = image.shape[:2][::-1] image = resize_image(image, (conf.width, conf.height), "cv2_area") size_new = (conf.width, conf.height) scale = np.array(size) / np.array(size_new) if conf.grayscale: assert image.ndim == 2, image.shape image = image[None] else: image = image.transpose((2, 0, 1)) # HxWxC to CxHxW image = torch.from_numpy(image / 255.0).float() # assure that the size is divisible by dfactor size_new = tuple( map( lambda x: int(x // conf.dfactor * conf.dfactor), image.shape[-2:], ) ) image = F.resize(image, size=size_new, antialias=True) scale = np.array(size) / np.array(size_new)[::-1] return image, scale conf = SimpleNamespace(**{**default_conf, **conf}) image0 = read_image(path_0, conf.grayscale) image1 = read_image(path_1, conf.grayscale) image0, scale0 = preprocess(image0) image1, scale1 = preprocess(image1) image0 = image0.to(device)[None] image1 = image1.to(device)[None] pred = model({"image0": image0, "image1": image1}) # Rescale keypoints and move to cpu kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"] kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5 kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5 ret = { "image0": image0.squeeze().cpu().numpy(), "image1": image1.squeeze().cpu().numpy(), "keypoints0": kpts0.cpu().numpy(), "keypoints1": kpts1.cpu().numpy(), } if "mconf" in pred.keys(): ret["mconf"] = pred["mconf"].cpu().numpy() return ret @torch.no_grad() def match_images(model, image_0, image_1, conf, device="cpu"): default_conf = { "grayscale": True, "resize_max": 1024, "dfactor": 8, "cache_images": False, "force_resize": False, "width": 320, "height": 240, } def preprocess(image: np.ndarray): image = image.astype(np.float32, copy=False) size = image.shape[:2][::-1] scale = np.array([1.0, 1.0]) if conf.resize_max: scale = conf.resize_max / max(size) if scale < 1.0: size_new = tuple(int(round(x * scale)) for x in size) image = resize_image(image, size_new, "cv2_area") scale = np.array(size) / np.array(size_new) if conf.force_resize: size = image.shape[:2][::-1] image = resize_image(image, (conf.width, conf.height), "cv2_area") size_new = (conf.width, conf.height) scale = np.array(size) / np.array(size_new) if conf.grayscale: assert image.ndim == 2, image.shape image = image[None] else: image = image.transpose((2, 0, 1)) # HxWxC to CxHxW image = torch.from_numpy(image / 255.0).float() # assure that the size is divisible by dfactor size_new = tuple( map( lambda x: int(x // conf.dfactor * conf.dfactor), image.shape[-2:], ) ) image = F.resize(image, size=size_new) scale = np.array(size) / np.array(size_new)[::-1] return image, scale conf = SimpleNamespace(**{**default_conf, **conf}) if len(image_0.shape) == 3 and conf.grayscale: image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY) else: image0 = image_0 if len(image_0.shape) == 3 and conf.grayscale: image1 = cv2.cvtColor(image_1, cv2.COLOR_RGB2GRAY) else: image1 = image_1 # comment following lines, image is always RGB mode # if not conf.grayscale and len(image0.shape) == 3: # image0 = image0[:, :, ::-1] # BGR to RGB # if not conf.grayscale and len(image1.shape) == 3: # image1 = image1[:, :, ::-1] # BGR to RGB image0, scale0 = preprocess(image0) image1, scale1 = preprocess(image1) image0 = image0.to(device)[None] image1 = image1.to(device)[None] pred = model({"image0": image0, "image1": image1}) s0 = np.array(image_0.shape[:2][::-1]) / np.array(image0.shape[-2:][::-1]) s1 = np.array(image_1.shape[:2][::-1]) / np.array(image1.shape[-2:][::-1]) # Rescale keypoints and move to cpu if "keypoints0" in pred.keys() and "keypoints1" in pred.keys(): kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"] kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5 kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5 ret = { "image0": image0.squeeze().cpu().numpy(), "image1": image1.squeeze().cpu().numpy(), "image0_orig": image_0, "image1_orig": image_1, "keypoints0": kpts0.cpu().numpy(), "keypoints1": kpts1.cpu().numpy(), "keypoints0_orig": kpts0_origin.cpu().numpy(), "keypoints1_orig": kpts1_origin.cpu().numpy(), "mkeypoints0": kpts0.cpu().numpy(), "mkeypoints1": kpts1.cpu().numpy(), "mkeypoints0_orig": kpts0_origin.cpu().numpy(), "mkeypoints1_orig": kpts1_origin.cpu().numpy(), "original_size0": np.array(image_0.shape[:2][::-1]), "original_size1": np.array(image_1.shape[:2][::-1]), "new_size0": np.array(image0.shape[-2:][::-1]), "new_size1": np.array(image1.shape[-2:][::-1]), "scale0": s0, "scale1": s1, } if "mconf" in pred.keys(): ret["mconf"] = pred["mconf"].cpu().numpy() elif "scores" in pred.keys(): # adapting loftr ret["mconf"] = pred["scores"].cpu().numpy() else: ret["mconf"] = np.ones_like(kpts0.cpu().numpy()[:, 0]) if "lines0" in pred.keys() and "lines1" in pred.keys(): if "keypoints0" in pred.keys() and "keypoints1" in pred.keys(): kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"] kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5 kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5 kpts0_origin = kpts0_origin.cpu().numpy() kpts1_origin = kpts1_origin.cpu().numpy() else: kpts0_origin, kpts1_origin = ( None, None, ) # np.zeros([0]), np.zeros([0]) lines0, lines1 = pred["lines0"], pred["lines1"] lines0_raw, lines1_raw = pred["raw_lines0"], pred["raw_lines1"] lines0_raw = torch.from_numpy(lines0_raw.copy()) lines1_raw = torch.from_numpy(lines1_raw.copy()) lines0_raw = scale_lines(lines0_raw + 0.5, s0) - 0.5 lines1_raw = scale_lines(lines1_raw + 0.5, s1) - 0.5 lines0 = torch.from_numpy(lines0.copy()) lines1 = torch.from_numpy(lines1.copy()) lines0 = scale_lines(lines0 + 0.5, s0) - 0.5 lines1 = scale_lines(lines1 + 0.5, s1) - 0.5 ret = { "image0_orig": image_0, "image1_orig": image_1, "line0": lines0_raw.cpu().numpy(), "line1": lines1_raw.cpu().numpy(), "line0_orig": lines0.cpu().numpy(), "line1_orig": lines1.cpu().numpy(), "line_keypoints0_orig": kpts0_origin, "line_keypoints1_orig": kpts1_origin, } del pred torch.cuda.empty_cache() return ret @torch.no_grad() def main( conf: Dict, pairs: Path, image_dir: Path, export_dir: Optional[Path] = None, matches: Optional[Path] = None, # out features: Optional[Path] = None, # out features_ref: Optional[Path] = None, max_kps: Optional[int] = 8192, overwrite: bool = False, ) -> Path: logger.info( "Extracting semi-dense features with configuration:" f"\n{pprint.pformat(conf)}" ) if features is None: features = "feats_" if isinstance(features, Path): features_q = features if matches is None: raise ValueError( "Either provide both features and matches as Path" " or both as names." ) else: if export_dir is None: raise ValueError( "Provide an export_dir if features and matches" f" are not file paths: {features}, {matches}." ) features_q = Path(export_dir, f'{features}{conf["output"]}.h5') if matches is None: matches = Path(export_dir, f'{conf["output"]}_{pairs.stem}.h5') if features_ref is None: features_ref = [] elif isinstance(features_ref, list): features_ref = list(features_ref) elif isinstance(features_ref, Path): features_ref = [features_ref] else: raise TypeError(str(features_ref)) match_and_assign( conf, pairs, image_dir, matches, features_q, features_ref, max_kps, overwrite, ) return features_q, matches if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pairs", type=Path, required=True) parser.add_argument("--image_dir", type=Path, required=True) parser.add_argument("--export_dir", type=Path, required=True) parser.add_argument( "--matches", type=Path, default=confs["loftr"]["output"] ) parser.add_argument( "--features", type=str, default="feats_" + confs["loftr"]["output"] ) parser.add_argument( "--conf", type=str, default="loftr", choices=list(confs.keys()) ) args = parser.parse_args() main( confs[args.conf], args.pairs, args.image_dir, args.export_dir, args.matches, args.features, )