Spaces:
Running
Running
File size: 1,710 Bytes
976ea17 233efeb 976ea17 233efeb 976ea17 233efeb 976ea17 feeb679 976ea17 469f650 976ea17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import runpod
from os import environ as env
import json
from pydantic import BaseModel, Field
class Movie(BaseModel):
title: str = Field(..., title="The title of the movie")
year: int = Field(..., title="The year the movie was released")
director: str = Field(..., title="The director of the movie")
genre: str = Field(..., title="The genre of the movie")
plot: str = Field(..., title="Plot summary of the movie")
def pydantic_model_to_json_schema(pydantic_model_class):
schema = pydantic_model_class.model_json_schema()
# Optional example field from schema, is not needed for the grammar generation
if "example" in schema:
del schema["example"]
json_schema = json.dumps(schema)
return json_schema
default_schema_example = """{ "title": ..., "year": ..., "director": ..., "genre": ..., "plot":...}"""
default_schema = pydantic_model_to_json_schema(Movie)
default_prompt = f"Instruct: \nOutput a JSON object in this format: {default_schema_example} for the following movie: The Matrix\nOutput:\n"
from utils import llm_stream_sans_network_simple
def handler(job):
""" Handler function that will be used to process jobs. """
job_input = job['input']
filename=env.get("MODEL_FILE", "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf")
prompt = job_input.get('prompt', default_prompt)
schema = job_input.get('schema', default_schema)
print("got this input", str(job_input))
print("prompt", prompt )
print("schema", schema )
output = llm_stream_sans_network_simple(prompt, schema)
#print("got this output", str(output))
return output
runpod.serverless.start({
"handler": handler,
#"return_aggregate_stream": True
})
|