Spaces:
Running
Running
Luke Stanley
Avoid unneeded imports, make serverless output more sensible, removing some debugging and comments
469f650
import runpod | |
from os import environ as env | |
import json | |
from pydantic import BaseModel, Field | |
class Movie(BaseModel): | |
title: str = Field(..., title="The title of the movie") | |
year: int = Field(..., title="The year the movie was released") | |
director: str = Field(..., title="The director of the movie") | |
genre: str = Field(..., title="The genre of the movie") | |
plot: str = Field(..., title="Plot summary of the movie") | |
def pydantic_model_to_json_schema(pydantic_model_class): | |
schema = pydantic_model_class.model_json_schema() | |
# Optional example field from schema, is not needed for the grammar generation | |
if "example" in schema: | |
del schema["example"] | |
json_schema = json.dumps(schema) | |
return json_schema | |
default_schema_example = """{ "title": ..., "year": ..., "director": ..., "genre": ..., "plot":...}""" | |
default_schema = pydantic_model_to_json_schema(Movie) | |
default_prompt = f"Instruct: \nOutput a JSON object in this format: {default_schema_example} for the following movie: The Matrix\nOutput:\n" | |
from utils import llm_stream_sans_network_simple | |
def handler(job): | |
""" Handler function that will be used to process jobs. """ | |
job_input = job['input'] | |
filename=env.get("MODEL_FILE", "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf") | |
prompt = job_input.get('prompt', default_prompt) | |
schema = job_input.get('schema', default_schema) | |
print("got this input", str(job_input)) | |
print("prompt", prompt ) | |
print("schema", schema ) | |
output = llm_stream_sans_network_simple(prompt, schema) | |
#print("got this output", str(output)) | |
return output | |
runpod.serverless.start({ | |
"handler": handler, | |
#"return_aggregate_stream": True | |
}) | |