Spaces:
Running
Running
Luke Stanley
commited on
Commit
·
c355718
1
Parent(s):
74d6e52
Adds Gradio app wrapper and Dockerfile
Browse files- Dockerfile +51 -0
- app.py +34 -0
Dockerfile
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ARG CUDA_IMAGE="12.1.1-devel-ubuntu22.04"
|
2 |
+
FROM nvidia/cuda:${CUDA_IMAGE}
|
3 |
+
|
4 |
+
# We need to set the host to 0.0.0.0 to allow outside access
|
5 |
+
ENV HOST 0.0.0.0
|
6 |
+
|
7 |
+
RUN apt-get update && apt-get upgrade -y \
|
8 |
+
&& apt-get install -y git build-essential \
|
9 |
+
python3 python3-pip gcc wget \
|
10 |
+
ocl-icd-opencl-dev opencl-headers clinfo \
|
11 |
+
libclblast-dev libopenblas-dev \
|
12 |
+
&& mkdir -p /etc/OpenCL/vendors && echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
|
13 |
+
RUN apt-get install git -y
|
14 |
+
COPY . .
|
15 |
+
|
16 |
+
# setting build related env vars
|
17 |
+
ENV CUDA_DOCKER_ARCH=all
|
18 |
+
ENV LLAMA_CUBLAS=1
|
19 |
+
|
20 |
+
RUN useradd -m -u 1000 user
|
21 |
+
# Switch to the "user" user
|
22 |
+
USER user
|
23 |
+
# Set home to the user's home directory
|
24 |
+
ENV HOME=/home/user \
|
25 |
+
PATH=/home/user/.local/bin:$PATH \
|
26 |
+
PYTHONPATH=$HOME/app \
|
27 |
+
PYTHONUNBUFFERED=1 \
|
28 |
+
GRADIO_ALLOW_FLAGGING=never \
|
29 |
+
GRADIO_NUM_PORTS=1 \
|
30 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
31 |
+
GRADIO_THEME=huggingface \
|
32 |
+
SYSTEM=spaces
|
33 |
+
|
34 |
+
WORKDIR $HOME/app
|
35 |
+
|
36 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
37 |
+
COPY --chown=user . $HOME/app
|
38 |
+
# Install dependencies
|
39 |
+
RUN python3 -m pip install --upgrade pip && \
|
40 |
+
python3 -m pip install pytest cmake \
|
41 |
+
scikit-build setuptools fastapi uvicorn sse-starlette \
|
42 |
+
pydantic-settings starlette-context gradio huggingface_hub hf_transfer
|
43 |
+
RUN python3 -m pip install requests pydantic uvicorn starlette fastapi sse_starlette starlette_context pydantic_settings
|
44 |
+
|
45 |
+
|
46 |
+
# Install llama-cpp-python (build with cuda)
|
47 |
+
RUN CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install git+https://github.com/lukestanley/llama-cpp-python.git@expose_json_grammar_convert_function
|
48 |
+
|
49 |
+
CMD ["python3", "app.py"]
|
50 |
+
|
51 |
+
# Credit to Radamés Ajna <[email protected]> for the original Dockerfile
|
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import system as run
|
2 |
+
from subprocess import check_output
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Without a GPU, we need to re-install llama-cpp-python to avoid an error.
|
7 |
+
# We use a shell command to detect if we have an NVIDIA GPU available:
|
8 |
+
use_gpu = True
|
9 |
+
try:
|
10 |
+
command = "nvidia-debugdump --list|grep Device"
|
11 |
+
output = str(check_output(command, shell=True).decode())
|
12 |
+
if "NVIDIA" in output and "ID" in output:
|
13 |
+
print("NVIDIA GPU detected.")
|
14 |
+
except Exception as e:
|
15 |
+
print("No NVIDIA GPU detected, using CPU. GPU check result:", e)
|
16 |
+
use_gpu = False
|
17 |
+
|
18 |
+
if use_gpu:
|
19 |
+
print("GPU detected, existing GPU focused llama-cpp-python should work.")
|
20 |
+
else:
|
21 |
+
print("Avoiding error by re-installing non-GPU llama-cpp-python build because no GPU was detected.")
|
22 |
+
run('pip uninstall llama-cpp-python -y')
|
23 |
+
run('pip install git+https://github.com/lukestanley/llama-cpp-python.git@expose_json_grammar_convert_function --upgrade --no-cache-dir --force-reinstall')
|
24 |
+
print("llama-cpp-python re-installed, will now attempt to load.")
|
25 |
+
|
26 |
+
# Now chill can import llama-cpp-python without an error:
|
27 |
+
from chill import improvement_loop
|
28 |
+
|
29 |
+
|
30 |
+
def greet(text):
|
31 |
+
return str(improvement_loop(text))
|
32 |
+
|
33 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
34 |
+
demo.launch(max_threads=1)
|