File size: 11,830 Bytes
71cd8ad
90def7d
71cd8ad
 
 
f2ef0e9
90def7d
1f40cb7
71cd8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9afe185
 
 
 
 
 
 
 
 
 
 
 
 
4855a8c
9afe185
71cd8ad
 
 
 
 
 
 
 
 
 
 
5b9a852
 
cf16aef
970e6bf
5b9a852
 
 
 
 
 
baf0072
4855a8c
970e6bf
fe96d5f
cf16aef
1d59da3
 
 
 
 
 
 
 
 
 
 
5b9a852
 
aa53fd4
71cd8ad
 
f8f2c33
 
 
 
 
 
 
71cd8ad
 
 
a648d00
71cd8ad
 
 
 
9afe185
71cd8ad
 
 
 
 
 
 
 
f8f2c33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71cd8ad
f8f2c33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71cd8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import os


from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
import jsonlines  
  
# Initialize an empty list to store the JSON objects  
json_list = []  
  
# Open the JSONL file  
with jsonlines.open('commit_results.jsonl') as reader:  
    for obj in reader:  
        # Append each JSON object to the list  
        json_list.append(obj) 
# _test_data = pd.DataFrame({"Score": [54,46,53], "Name": ["MageBench", "MageBench", "MageBench"], "BaseModel": ["GPT-4o", "GPT-4o", "LLaMA"], "Env.": ["Sokoban", "Sokoban", "Football"],
                          # "Target-research": ["Model-Eval-Global", "Model-Eval-Online", "Agent-Eval-Prompt"], "Subset": ["mini", "all", "mini"],  "Link": ["xxx", "xxx", "xxx"]})
json_list = sorted(json_list, key=lambda x: x['Score'], reverse=True) 
committed = pd.DataFrame(json_list)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,  #dataframe,
        select_columns=SelectColumns(
            default_selection=["Score", "Name", "BaseModel", "Env.", "Target-research", "Subset", "Link"],
            cant_deselect=["Score", "Name",],
            label="Select Columns to Display:",
        ),
        search_columns=SearchColumns(primary_column="Name", secondary_columns=["BaseModel", "Target-research"],
                                     placeholder="Search by work name or basemodel. To search by country, type 'basemodel:<query>'",
                                     label="Search"),
        filter_columns=[
            ColumnFilter("Target-research", type="checkboxgroup", label="Comparison settings for target researches (Single Selection)"),
            # ColumnFilter("BaseModel", type="dropdown", label="Select The base lmm model that fultill the task."),
            ColumnFilter("Env.", type="checkboxgroup", label="Environment (Single Selection)"),
            ColumnFilter("Subset", type="checkboxgroup", label="Subset (Single Selection)"),
            ColumnFilter("State", type="checkboxgroup", label="Result state (checked or under-review)"),
            # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            # ColumnFilter(
            #     AutoEvalColumn.params.name,
            #     type="slider",
            #     min=0.01,
            #     max=150,
            #     label="Select the number of parameters (B)",
            # ),
            # ColumnFilter(
            #     AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
            # ),
        ],
        interactive=False,
    )


# =================test
if os.path.exists("./text.txt"):
    print(open("./text.txt").read())
else:
    print("not exists")


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Video('demo.mp4', elem_id="video-player", label="Introduction Video")  
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(committed)  # LEADERBOARD_DF

        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
            with gr.Column():  
                with gr.Row():  
                    score_input = gr.Textbox(label="Score (float)", placeholder="请输入分数")  
                    name_input = gr.Textbox(label="Name (str)", placeholder="请输入名称")  
                    base_model_input = gr.Textbox(label="BaseModel (str)", placeholder="请输入基模型名称")  
                  
                with gr.Row():  
                    env_dropdown = gr.Dropdown(  
                        choices=["Sokoban", "Football", "WebUI"],  
                        label="Env.",  
                        value="Sokoban"  
                    )  
                    target_research_dropdown = gr.Dropdown(  
                        choices=["Model-Eval-Online", "Model-Eval-Global"],  
                        label="Target-research",  
                        value="Model-Eval-Online"  
                    )  
                    subset_dropdown = gr.Dropdown(  
                        choices=["mini", "all"],  
                        label="Subset",  
                        value="mini"  
                    )  
                  
                link_input = gr.Textbox(label="Link (str)", placeholder="请输入链接")  
                  
                submit_button = gr.Button("Submit Eval")  
                submission_result = gr.Markdown()  
                  
                def submit_eval(score, name, base_model, env, target_research, subset, link):  
                    # 在这里处理提交逻辑,可以将信息保存到数据库或进行其他处理  
                    result = (  
                        f"Score: {score}\n"  
                        f"Name: {name}\n"  
                        f"BaseModel: {base_model}\n"  
                        f"Env: {env}\n"  
                        f"Target-research: {target_research}\n"  
                        f"Subset: {subset}\n"  
                        f"Link: {link}"  
                    ) 
                    open("./text.txt", "w").write(result)
                    return result  
                  
                submit_button.click(  
                    submit_eval,   
                    [score_input, name_input, base_model_input, env_dropdown, target_research_dropdown, subset_dropdown, link_input],  
                    submission_result  
                )  
            #     with gr.Column():
            #         with gr.Accordion(
            #             f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 finished_eval_table = gr.components.Dataframe(
            #                     value=finished_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )
            #         with gr.Accordion(
            #             f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 running_eval_table = gr.components.Dataframe(
            #                     value=running_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )

            #         with gr.Accordion(
            #             f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 pending_eval_table = gr.components.Dataframe(
            #                     value=pending_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )
            # with gr.Row():
            #     gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")

            # with gr.Row():
            #     with gr.Column():
            #         model_name_textbox = gr.Textbox(label="Model name")
            #         revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
            #         model_type = gr.Dropdown(
            #             choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
            #             label="Model type",
            #             multiselect=False,
            #             value=None,
            #             interactive=True,
            #         )

            #     with gr.Column():
            #         precision = gr.Dropdown(
            #             choices=[i.value.name for i in Precision if i != Precision.Unknown],
            #             label="Precision",
            #             multiselect=False,
            #             value="float16",
            #             interactive=True,
            #         )
            #         weight_type = gr.Dropdown(
            #             choices=[i.value.name for i in WeightType],
            #             label="Weights type",
            #             multiselect=False,
            #             value="Original",
            #             interactive=True,
            #         )
            #         base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            # submit_button = gr.Button("Submit Eval")
            # submission_result = gr.Markdown()
            # submit_button.click(
            #     add_new_eval,
            #     [
            #         model_name_textbox,
            #         base_model_name_textbox,
            #         revision_name_textbox,
            #         precision,
            #         weight_type,
            #         model_type,
            #     ],
            #     submission_result,
            # )

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()