File size: 18,473 Bytes
dbac20f c4dd2de dbac20f c4dd2de dbac20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import logging
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmaudio.ext.rotary_embeddings import compute_rope_rotations
from mmaudio.model.embeddings import TimestepEmbedder
from mmaudio.model.low_level import MLP, ChannelLastConv1d, ConvMLP
from mmaudio.model.transformer_layers import (FinalBlock, JointBlock, MMDitSingleBlock)
log = logging.getLogger()
@dataclass
class PreprocessedConditions:
clip_f: torch.Tensor
sync_f: torch.Tensor
text_f: torch.Tensor
clip_f_c: torch.Tensor
text_f_c: torch.Tensor
# Partially from https://github.com/facebookresearch/DiT
class MMAudio(nn.Module):
def __init__(self,
*,
latent_dim: int,
clip_dim: int,
sync_dim: int,
text_dim: int,
hidden_dim: int,
depth: int,
fused_depth: int,
num_heads: int,
mlp_ratio: float = 4.0,
latent_seq_len: int,
clip_seq_len: int,
sync_seq_len: int,
text_seq_len: int = 77,
latent_mean: Optional[torch.Tensor] = None,
latent_std: Optional[torch.Tensor] = None,
empty_string_feat: Optional[torch.Tensor] = None,
v2: bool = False) -> None:
super().__init__()
self.v2 = v2
self.latent_dim = latent_dim
self._latent_seq_len = latent_seq_len
self._clip_seq_len = clip_seq_len
self._sync_seq_len = sync_seq_len
self._text_seq_len = text_seq_len
self.hidden_dim = hidden_dim
self.num_heads = num_heads
if v2:
self.audio_input_proj = nn.Sequential(
ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3),
nn.SiLU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3),
)
self.clip_input_proj = nn.Sequential(
nn.Linear(clip_dim, hidden_dim),
nn.SiLU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
)
self.sync_input_proj = nn.Sequential(
ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3),
nn.SiLU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
)
self.text_input_proj = nn.Sequential(
nn.Linear(text_dim, hidden_dim),
nn.SiLU(),
MLP(hidden_dim, hidden_dim * 4),
)
else:
self.audio_input_proj = nn.Sequential(
ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3),
nn.SELU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3),
)
self.clip_input_proj = nn.Sequential(
nn.Linear(clip_dim, hidden_dim),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
)
self.sync_input_proj = nn.Sequential(
ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3),
nn.SELU(),
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
)
self.text_input_proj = nn.Sequential(
nn.Linear(text_dim, hidden_dim),
MLP(hidden_dim, hidden_dim * 4),
)
self.clip_cond_proj = nn.Linear(hidden_dim, hidden_dim)
self.text_cond_proj = nn.Linear(hidden_dim, hidden_dim)
self.global_cond_mlp = MLP(hidden_dim, hidden_dim * 4)
# each synchformer output segment has 8 feature frames
self.sync_pos_emb = nn.Parameter(torch.zeros((1, 1, 8, sync_dim)))
self.final_layer = FinalBlock(hidden_dim, latent_dim)
if v2:
self.t_embed = TimestepEmbedder(hidden_dim,
frequency_embedding_size=hidden_dim,
max_period=1)
else:
self.t_embed = TimestepEmbedder(hidden_dim,
frequency_embedding_size=256,
max_period=10000)
self.joint_blocks = nn.ModuleList([
JointBlock(hidden_dim,
num_heads,
mlp_ratio=mlp_ratio,
pre_only=(i == depth - fused_depth - 1)) for i in range(depth - fused_depth)
])
self.fused_blocks = nn.ModuleList([
MMDitSingleBlock(hidden_dim, num_heads, mlp_ratio=mlp_ratio, kernel_size=3, padding=1)
for i in range(fused_depth)
])
if latent_mean is None:
# these values are not meant to be used
# if you don't provide mean/std here, we should load them later from a checkpoint
assert latent_std is None
latent_mean = torch.ones(latent_dim).view(1, 1, -1).fill_(float('nan'))
latent_std = torch.ones(latent_dim).view(1, 1, -1).fill_(float('nan'))
else:
assert latent_std is not None
assert latent_mean.numel() == latent_dim, f'{latent_mean.numel()=} != {latent_dim=}'
if empty_string_feat is None:
empty_string_feat = torch.zeros((text_seq_len, text_dim))
self.latent_mean = nn.Parameter(latent_mean.view(1, 1, -1), requires_grad=False)
self.latent_std = nn.Parameter(latent_std.view(1, 1, -1), requires_grad=False)
self.empty_string_feat = nn.Parameter(empty_string_feat, requires_grad=False)
self.empty_clip_feat = nn.Parameter(torch.zeros(1, clip_dim), requires_grad=True)
self.empty_sync_feat = nn.Parameter(torch.zeros(1, sync_dim), requires_grad=True)
self.initialize_weights()
self.initialize_rotations()
def initialize_rotations(self):
base_freq = 1.0
latent_rot = compute_rope_rotations(self._latent_seq_len,
self.hidden_dim // self.num_heads,
10000,
freq_scaling=base_freq,
device=self.device)
clip_rot = compute_rope_rotations(self._clip_seq_len,
self.hidden_dim // self.num_heads,
10000,
freq_scaling=base_freq * self._latent_seq_len /
self._clip_seq_len,
device=self.device)
# self.latent_rot = latent_rot.to(self.device)
# self.clip_rot = clip_rot.to(self.device)
self.register_buffer('latent_rot', latent_rot)
self.register_buffer('clip_rot', clip_rot)
def update_seq_lengths(self, latent_seq_len: int, clip_seq_len: int, sync_seq_len: int) -> None:
self._latent_seq_len = latent_seq_len
self._clip_seq_len = clip_seq_len
self._sync_seq_len = sync_seq_len
self.initialize_rotations()
def initialize_weights(self):
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embed.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embed.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.joint_blocks:
nn.init.constant_(block.latent_block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.latent_block.adaLN_modulation[-1].bias, 0)
nn.init.constant_(block.clip_block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.clip_block.adaLN_modulation[-1].bias, 0)
nn.init.constant_(block.text_block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.text_block.adaLN_modulation[-1].bias, 0)
for block in self.fused_blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.conv.weight, 0)
nn.init.constant_(self.final_layer.conv.bias, 0)
# empty string feat shall be initialized by a CLIP encoder
nn.init.constant_(self.sync_pos_emb, 0)
nn.init.constant_(self.empty_clip_feat, 0)
nn.init.constant_(self.empty_sync_feat, 0)
def normalize(self, x: torch.Tensor) -> torch.Tensor:
# return (x - self.latent_mean) / self.latent_std
return x.sub_(self.latent_mean).div_(self.latent_std)
def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
# return x * self.latent_std + self.latent_mean
return x.mul_(self.latent_std).add_(self.latent_mean)
def preprocess_conditions(self, clip_f: torch.Tensor, sync_f: torch.Tensor,
text_f: torch.Tensor) -> PreprocessedConditions:
"""
cache computations that do not depend on the latent/time step
i.e., the features are reused over steps during inference
"""
assert clip_f.shape[1] == self._clip_seq_len, f'{clip_f.shape=} {self._clip_seq_len=}'
assert sync_f.shape[1] == self._sync_seq_len, f'{sync_f.shape=} {self._sync_seq_len=}'
assert text_f.shape[1] == self._text_seq_len, f'{text_f.shape=} {self._text_seq_len=}'
bs = clip_f.shape[0]
# B * num_segments (24) * 8 * 768
num_sync_segments = self._sync_seq_len // 8
sync_f = sync_f.view(bs, num_sync_segments, 8, -1) + self.sync_pos_emb
sync_f = sync_f.flatten(1, 2) # (B, VN, D)
# extend vf to match x
clip_f = self.clip_input_proj(clip_f) # (B, VN, D)
sync_f = self.sync_input_proj(sync_f) # (B, VN, D)
text_f = self.text_input_proj(text_f) # (B, VN, D)
# upsample the sync features to match the audio
sync_f = sync_f.transpose(1, 2) # (B, D, VN)
sync_f = F.interpolate(sync_f, size=self._latent_seq_len, mode='nearest-exact')
sync_f = sync_f.transpose(1, 2) # (B, N, D)
# get conditional features from the clip side
clip_f_c = self.clip_cond_proj(clip_f.mean(dim=1)) # (B, D)
text_f_c = self.text_cond_proj(text_f.mean(dim=1)) # (B, D)
return PreprocessedConditions(clip_f=clip_f,
sync_f=sync_f,
text_f=text_f,
clip_f_c=clip_f_c,
text_f_c=text_f_c)
def predict_flow(self, latent: torch.Tensor, t: torch.Tensor,
conditions: PreprocessedConditions) -> torch.Tensor:
"""
for non-cacheable computations
"""
assert latent.shape[1] == self._latent_seq_len, f'{latent.shape=} {self._latent_seq_len=}'
clip_f = conditions.clip_f
sync_f = conditions.sync_f
text_f = conditions.text_f
clip_f_c = conditions.clip_f_c
text_f_c = conditions.text_f_c
latent = self.audio_input_proj(latent) # (B, N, D)
global_c = self.global_cond_mlp(clip_f_c + text_f_c) # (B, D)
global_c = self.t_embed(t).unsqueeze(1) + global_c.unsqueeze(1) # (B, D)
extended_c = global_c + sync_f
for block in self.joint_blocks:
latent, clip_f, text_f = block(latent, clip_f, text_f, global_c, extended_c,
self.latent_rot, self.clip_rot) # (B, N, D)
for block in self.fused_blocks:
latent = block(latent, extended_c, self.latent_rot)
flow = self.final_layer(latent, global_c) # (B, N, out_dim), remove t
return flow
def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, sync_f: torch.Tensor,
text_f: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
"""
latent: (B, N, C)
vf: (B, T, C_V)
t: (B,)
"""
conditions = self.preprocess_conditions(clip_f, sync_f, text_f)
flow = self.predict_flow(latent, t, conditions)
return flow
def get_empty_string_sequence(self, bs: int) -> torch.Tensor:
return self.empty_string_feat.unsqueeze(0).expand(bs, -1, -1)
def get_empty_clip_sequence(self, bs: int) -> torch.Tensor:
return self.empty_clip_feat.unsqueeze(0).expand(bs, self._clip_seq_len, -1)
def get_empty_sync_sequence(self, bs: int) -> torch.Tensor:
return self.empty_sync_feat.unsqueeze(0).expand(bs, self._sync_seq_len, -1)
def get_empty_conditions(
self,
bs: int,
*,
negative_text_features: Optional[torch.Tensor] = None) -> PreprocessedConditions:
if negative_text_features is not None:
empty_text = negative_text_features
else:
empty_text = self.get_empty_string_sequence(1)
empty_clip = self.get_empty_clip_sequence(1)
empty_sync = self.get_empty_sync_sequence(1)
conditions = self.preprocess_conditions(empty_clip, empty_sync, empty_text)
conditions.clip_f = conditions.clip_f.expand(bs, -1, -1)
conditions.sync_f = conditions.sync_f.expand(bs, -1, -1)
conditions.clip_f_c = conditions.clip_f_c.expand(bs, -1)
if negative_text_features is None:
conditions.text_f = conditions.text_f.expand(bs, -1, -1)
conditions.text_f_c = conditions.text_f_c.expand(bs, -1)
return conditions
def ode_wrapper(self, t: torch.Tensor, latent: torch.Tensor, conditions: PreprocessedConditions,
empty_conditions: PreprocessedConditions, cfg_strength: float) -> torch.Tensor:
t = t * torch.ones(len(latent), device=latent.device, dtype=latent.dtype)
if cfg_strength < 1.0:
return self.predict_flow(latent, t, conditions)
else:
return (cfg_strength * self.predict_flow(latent, t, conditions) +
(1 - cfg_strength) * self.predict_flow(latent, t, empty_conditions))
def load_weights(self, src_dict) -> None:
if 't_embed.freqs' in src_dict:
del src_dict['t_embed.freqs']
if 'latent_rot' in src_dict:
del src_dict['latent_rot']
if 'clip_rot' in src_dict:
del src_dict['clip_rot']
self.load_state_dict(src_dict, strict=False)
@property
def device(self) -> torch.device:
return self.latent_mean.device
@property
def latent_seq_len(self) -> int:
return self._latent_seq_len
@property
def clip_seq_len(self) -> int:
return self._clip_seq_len
@property
def sync_seq_len(self) -> int:
return self._sync_seq_len
def small_16k(**kwargs) -> MMAudio:
num_heads = 7
return MMAudio(latent_dim=20,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=12,
fused_depth=8,
num_heads=num_heads,
latent_seq_len=250,
clip_seq_len=64,
sync_seq_len=192,
**kwargs)
def small_44k(**kwargs) -> MMAudio:
num_heads = 7
return MMAudio(latent_dim=40,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=12,
fused_depth=8,
num_heads=num_heads,
latent_seq_len=345,
clip_seq_len=64,
sync_seq_len=192,
**kwargs)
def medium_44k(**kwargs) -> MMAudio:
num_heads = 14
return MMAudio(latent_dim=40,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=12,
fused_depth=8,
num_heads=num_heads,
latent_seq_len=345,
clip_seq_len=64,
sync_seq_len=192,
**kwargs)
def large_44k(**kwargs) -> MMAudio:
num_heads = 14
return MMAudio(latent_dim=40,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=21,
fused_depth=14,
num_heads=num_heads,
latent_seq_len=345,
clip_seq_len=64,
sync_seq_len=192,
**kwargs)
def large_44k_v2(**kwargs) -> MMAudio:
num_heads = 14
return MMAudio(latent_dim=40,
clip_dim=1024,
sync_dim=768,
text_dim=1024,
hidden_dim=64 * num_heads,
depth=21,
fused_depth=14,
num_heads=num_heads,
latent_seq_len=345,
clip_seq_len=64,
sync_seq_len=192,
v2=True,
**kwargs)
def get_my_mmaudio(name: str, **kwargs) -> MMAudio:
if name == 'small_16k':
return small_16k(**kwargs)
if name == 'small_44k':
return small_44k(**kwargs)
if name == 'medium_44k':
return medium_44k(**kwargs)
if name == 'large_44k':
return large_44k(**kwargs)
if name == 'large_44k_v2':
return large_44k_v2(**kwargs)
raise ValueError(f'Unknown model name: {name}')
if __name__ == '__main__':
network = get_my_mmaudio('small_16k')
# print the number of parameters in terms of millions
num_params = sum(p.numel() for p in network.parameters()) / 1e6
print(f'Number of parameters: {num_params:.2f}M')
|