File size: 8,642 Bytes
d35ea9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

"""Streaming images and labels from datasets created with dataset_tool.py."""

import os
import numpy as np
import zipfile
import PIL.Image
import json
import torch
import dnnlib

try:
    import pyspng
except ImportError:
    pyspng = None

#----------------------------------------------------------------------------

class Dataset(torch.utils.data.Dataset):
    def __init__(self,
        name,                   # Name of the dataset.
        raw_shape,              # Shape of the raw image data (NCHW).
        max_size    = None,     # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
        use_labels  = False,    # Enable conditioning labels? False = label dimension is zero.
        xflip       = False,    # Artificially double the size of the dataset via x-flips. Applied after max_size.
        random_seed = 0,        # Random seed to use when applying max_size.
    ):
        self._name = name
        self._raw_shape = list(raw_shape)
        self._use_labels = use_labels
        self._raw_labels = None
        self._label_shape = None

        # Apply max_size.
        self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
        if (max_size is not None) and (self._raw_idx.size > max_size):
            np.random.RandomState(random_seed).shuffle(self._raw_idx)
            self._raw_idx = np.sort(self._raw_idx[:max_size])

        # Apply xflip.
        self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
        if xflip:
            self._raw_idx = np.tile(self._raw_idx, 2)
            self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])

    def _get_raw_labels(self):
        if self._raw_labels is None:
            self._raw_labels = self._load_raw_labels() if self._use_labels else None
            if self._raw_labels is None:
                self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
            assert isinstance(self._raw_labels, np.ndarray)
            assert self._raw_labels.shape[0] == self._raw_shape[0]
            assert self._raw_labels.dtype in [np.float32, np.int64]
            if self._raw_labels.dtype == np.int64:
                assert self._raw_labels.ndim == 1
                assert np.all(self._raw_labels >= 0)
        return self._raw_labels

    def close(self): # to be overridden by subclass
        pass

    def _load_raw_image(self, raw_idx): # to be overridden by subclass
        raise NotImplementedError

    def _load_raw_labels(self): # to be overridden by subclass
        raise NotImplementedError

    def __getstate__(self):
        return dict(self.__dict__, _raw_labels=None)

    def __del__(self):
        try:
            self.close()
        except:
            pass

    def __len__(self):
        return self._raw_idx.size

    def __getitem__(self, idx):
        image = self._load_raw_image(self._raw_idx[idx])
        assert isinstance(image, np.ndarray)
        assert list(image.shape) == self.image_shape
        assert image.dtype == np.uint8
        if self._xflip[idx]:
            assert image.ndim == 3 # CHW
            image = image[:, :, ::-1]
        return image.copy(), self.get_label(idx)

    def get_label(self, idx):
        label = self._get_raw_labels()[self._raw_idx[idx]]
        if label.dtype == np.int64:
            onehot = np.zeros(self.label_shape, dtype=np.float32)
            onehot[label] = 1
            label = onehot
        return label.copy()

    def get_details(self, idx):
        d = dnnlib.EasyDict()
        d.raw_idx = int(self._raw_idx[idx])
        d.xflip = (int(self._xflip[idx]) != 0)
        d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
        return d

    @property
    def name(self):
        return self._name

    @property
    def image_shape(self):
        return list(self._raw_shape[1:])

    @property
    def num_channels(self):
        assert len(self.image_shape) == 3 # CHW
        return self.image_shape[0]

    @property
    def resolution(self):
        assert len(self.image_shape) == 3 # CHW
        assert self.image_shape[1] == self.image_shape[2]
        return self.image_shape[1]

    @property
    def label_shape(self):
        if self._label_shape is None:
            raw_labels = self._get_raw_labels()
            if raw_labels.dtype == np.int64:
                self._label_shape = [int(np.max(raw_labels)) + 1]
            else:
                self._label_shape = raw_labels.shape[1:]
        return list(self._label_shape)

    @property
    def label_dim(self):
        assert len(self.label_shape) == 1
        return self.label_shape[0]

    @property
    def has_labels(self):
        return any(x != 0 for x in self.label_shape)

    @property
    def has_onehot_labels(self):
        return self._get_raw_labels().dtype == np.int64

#----------------------------------------------------------------------------

class ImageFolderDataset(Dataset):
    def __init__(self,
        path,                   # Path to directory or zip.
        resolution      = None, # Ensure specific resolution, None = highest available.
        **super_kwargs,         # Additional arguments for the Dataset base class.
    ):
        self._path = path
        self._zipfile = None

        if os.path.isdir(self._path):
            self._type = 'dir'
            self._all_fnames = {os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files}
        elif self._file_ext(self._path) == '.zip':
            self._type = 'zip'
            self._all_fnames = set(self._get_zipfile().namelist())
        else:
            raise IOError('Path must point to a directory or zip')

        PIL.Image.init()
        self._image_fnames = sorted(fname for fname in self._all_fnames if self._file_ext(fname) in PIL.Image.EXTENSION)
        if len(self._image_fnames) == 0:
            raise IOError('No image files found in the specified path')

        name = os.path.splitext(os.path.basename(self._path))[0]
        raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
        if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution):
            raise IOError('Image files do not match the specified resolution')
        super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)

    @staticmethod
    def _file_ext(fname):
        return os.path.splitext(fname)[1].lower()

    def _get_zipfile(self):
        assert self._type == 'zip'
        if self._zipfile is None:
            self._zipfile = zipfile.ZipFile(self._path)
        return self._zipfile

    def _open_file(self, fname):
        if self._type == 'dir':
            return open(os.path.join(self._path, fname), 'rb')
        if self._type == 'zip':
            return self._get_zipfile().open(fname, 'r')
        return None

    def close(self):
        try:
            if self._zipfile is not None:
                self._zipfile.close()
        finally:
            self._zipfile = None

    def __getstate__(self):
        return dict(super().__getstate__(), _zipfile=None)

    def _load_raw_image(self, raw_idx):
        fname = self._image_fnames[raw_idx]
        with self._open_file(fname) as f:
            if pyspng is not None and self._file_ext(fname) == '.png':
                image = pyspng.load(f.read())
            else:
                image = np.array(PIL.Image.open(f))
        if image.ndim == 2:
            image = image[:, :, np.newaxis] # HW => HWC
        image = image.transpose(2, 0, 1) # HWC => CHW
        return image

    def _load_raw_labels(self):
        fname = 'dataset.json'
        if fname not in self._all_fnames:
            return None
        with self._open_file(fname) as f:
            labels = json.load(f)['labels']
        if labels is None:
            return None
        labels = dict(labels)
        labels = [labels[fname.replace('\\', '/')] for fname in self._image_fnames]
        labels = np.array(labels)
        labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
        return labels

#----------------------------------------------------------------------------